Long-Term Trajectory Prediction for Oil Tankers via Grid-Based Clustering
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Key Point Clustering
3.2. Trajectory Finding Based on Waymark Points
- •
- : the heading direction from position to position ;
- •
- : the spherical distance between to position , calculated using the Python package Geopy;
- •
- : the linear directional mean of direction , calculated as:
- •
- the angular change from direction to direction , measured in degrees. is calculated as:
3.2.1. Candidate Set Identification and Navigation Status Update
3.2.2. Candidate Set Filtering
3.2.3. Waymark Point Selection
Algorithm 1 Trajectory prediction algorithm |
Require: , , |
Parameters: , , , , , , |
Initialization: |
while do |
for all do |
end for |
Append to T |
end while |
return T |
4. Experimental Results
4.1. Dataset and Pre-Processing
4.2. Results for Grid-Based Key Point Clustering
4.3. Results for Trajectory Prediction
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Fu, X.; Xiao, Z.; Xu, H.; Qin, Z. Vessel Trajectory Prediction in Maritime Transportation: Current Approaches and Beyond. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19980–19998. [Google Scholar] [CrossRef]
- Tu, E.; Zhang, G.; Mao, S.; Rachmawati, L.; Huang, G. Modeling Historical AIS Data For Vessel Path Prediction: A Comprehensive Treatment. arXiv 2020, arXiv:2001.01592. [Google Scholar]
- Rong, H.; Teixeira, A.P.; Soares, C.G. Ship trajectory uncertainty prediction based on a Gaussian Process model. Ocean Eng. 2019, 182, 499–511. [Google Scholar] [CrossRef]
- Altché, F.; de La Fortelle, A. An LSTM Network for Highway Trajectory Prediction. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 353–359. [Google Scholar]
- Zhang, L.; Zhu, Y.; Su, J.; Lu, W.; Li, J.; Yao, Y. A Hybrid Prediction Model Based on KNN-LSTM for Vessel Trajectory. Mathematics 2022, 10, 4493. [Google Scholar] [CrossRef]
- You, L.; Xiao, S.; Peng, Q.; Claramunt, C.; Zhang, J. ST-Seq2Seq: A Spatio-Temporal Feature-Optimized Seq2Seq Model for Short-Term Vessel Trajectory Prediction. IEEE Access 2020, 8, 218565–218574. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. An AIS-based multiple trajectory prediction approach for collision avoidance in future vessels. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Glasgow, UK, 9–14 June 2019; American Society of Mechanical Engineers: New York, NY, USA, 2019; Volume 58851. [Google Scholar]
- Kim, E.; Cho, H.; Kim, N.; Kim, E.; Ryu, J.; Park, H. Sensitive Resource and Traffic Density Risk Analysis of Marine Spill Accidents Using Automated Identification System Big Data. J. Mar. Sci. Appl. 2020, 19, 173–181. [Google Scholar] [CrossRef]
- Artana, K.; Pitana, T.; Dinariyana, D.; Ariana, M.; Kristianto, D.; Pratiwi, E. Real-time monitoring of subsea gas pipelines, offshore platforms, and ship inspection scores using an Automatic Identification System. J. Mar. Sci. Appl. 2018, 17, 101–111. [Google Scholar] [CrossRef]
- DMA. AIS Data. 2022. Available online: https://dma.dk/safety-at-sea/navigational-information/ais-data (accessed on 6 June 2023).
- Hacinecipoglu, A.; Konukseven, E.I.; Koku, A.B. Multiple Human Trajectory Prediction and Cooperative Navigation Modeling in Crowded Scenes. Intell. Serv. Robot. 2020, 13, 479–493. [Google Scholar] [CrossRef]
- Shang, J.; Liu, C.; Shi, H.; Cheng, T.; Yue, K. A New Algorithm for Navigation Trajectory Prediction of Land Vehicles Based on a Generalised Extended Extrapolation Model. J. Navig. 2019, 72, 1217–1232. [Google Scholar] [CrossRef]
- Ni, Y.; Zhao, X. 3DTRIP: A General Framework for 3D Trajectory Recovery Integrated With Prediction. IEEE Robot. Autom. Lett. 2023, 8, 512–519. [Google Scholar] [CrossRef]
- Greer, R.; Deo, N.; Trivedi, M. Trajectory Prediction in Autonomous Driving With a Lane Heading Auxiliary Loss. IEEE Robot. Autom. Lett. 2021, 6, 4907–4914. [Google Scholar] [CrossRef]
- Kim, K.I.; Lee, K.M. Deep Learning-Based Caution Area Traffic Prediction with Automatic Identification System Sensor Data. Sensors 2018, 18, 3172. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Bai, X.; Xiao, Y.; He, J.; Xu, Y.; Ren, H. A Port Ship Flow Prediction Model Based on the Automatic Identification System and Gated Recurrent Units. J. Mar. Sci. Appl. 2021, 20, 572–580. [Google Scholar] [CrossRef]
- Ogura, T.; Inoue, T.; Uchihira, N. Prediction of Arrival Time of Vessels Considering Future Weather Conditions. Appl. Sci. 2021, 11, 4410. [Google Scholar] [CrossRef]
- Alessandrini, A.; Mazzarella, F.; Vespe, M. Estimated Time of Arrival Using Historical Vessel Tracking Data. IEEE Trans. Intell. Transp. Syst. 2019, 20, 7–15. [Google Scholar] [CrossRef]
- Petrou, P.; Tampakis, P.; Georgiou, H.V.; Pelekis, N.; Theodoridis, Y. Online Long-Term Trajectory Prediction Based on Mined Route Patterns. In Proceedings of the Multiple-Aspect Analysis of Semantic Trajectories: First International Workshop, MASTER 2019, Wurzburg, Germany, 16 September 2020; pp. 34–49. [Google Scholar]
- Perera, L.P.; Soares, C.G. Ocean vessel trajectory estimation and prediction based on extended Kalman filter. In Proceedings of the Second International Conference on Adaptive and Self-Adaptive Systems and Applications, Lisbon, Portugal, 21–26 November 2010; Citeseer: Princeton, NJ, USA, 2010; pp. 14–20. [Google Scholar]
- Vasquez, D.; Fraichard, T.; Laugier, C. Growing Hidden Markov Models: An Incremental Tool for Learning and Predicting Human and Vehicle Motion. Int. J. Robot. Res. 2009, 28, 1486–1506. [Google Scholar] [CrossRef] [Green Version]
- Bautista-Sánchez, R.; Barbosa-Santillan, L.I.; Sánchez-Escobar, J.J. Method for select best AIS data in prediction vessel movements and route estimation. Appl. Sci. 2021, 11, 2429. [Google Scholar] [CrossRef]
- Xu, X.; Liu, C.; Li, J.; Miao, Y. Trajectory clustering for SVR-based Time of Arrival estimation. Ocean Eng. 2022, 259, 111930. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Liu, R.W.; Xiong, N.; Wu, K.; Kim, T.H. A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis. Sensors 2017, 17, 1792. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Sun, P.; Zhao, J.; Li, D.; Wang, C. A review of moving object trajectory clustering algorithms. Artif. Intell. Rev. 2017, 47, 123–144. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Yang, Z.; Liu, R.W.; Wu, K.; Wan, Y. Adaptively constrained dynamic time warping for time series classification and clustering. Inf. Sci. 2020, 534, 97–116. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, G. A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition. Ocean Eng. 2019, 172, 456–467. [Google Scholar] [CrossRef]
- Wang, L.; Chen, P.; Chen, L.; Mou, J. Ship AIS Trajectory Clustering: An HDBSCAN-Based Approach. J. Mar. Sci. Eng. 2021, 9, 566. [Google Scholar] [CrossRef]
Key Notation | |
---|---|
Longitude | |
Latitude | |
COG | |
The k-th key point | |
The location of the k-th key point | |
The m-th waymark point, , , , denotes the Lon, Lat, COG and the point density | |
Destination location | |
The heading direction from position to position | |
The spherical distance between position and | |
Direction , a unit vector of the origin of a two-dimensional coordinate system | |
The linear directional mean of direction , defined in Equation (2) | |
The angular change from direction to direction , defined in Equation (3) | |
Candidate set identified in the n-th iteration, defined in Equation (4) | |
Refined candidate set at the n-th iteration, defined in Equation (8), | |
The heading trend at the beginning of the n-th iteration, defined in Equation (5) | |
The mean COGs of the waymark points in | |
The heading direction from position to position | |
The direction from position to the destination | |
Directional difference between and , defined in Equation (6) | |
Directional difference between the COG of and the COG of , defined in Equation (7) |
Minimum Number of Points | ||||
---|---|---|---|---|
COG clustering | key points n | 40 | 1 | |
5 | ||||
Cluster | Sample Size | DTW Distance (Unit: km) | Hausdorff Distance (Unit: km) | ||||
---|---|---|---|---|---|---|---|
Proposed | Best-Matched | Graph-Based | Proposed | Best-Matched | Graph-Based | ||
0 | 137 | 555.68 | 676.44 | 772.76 | 8.93 | 9.96 | 11.68 |
1 | 1734 | 759.10 | 908.50 | 1181.15 | 11.68 | 16.04 | 19.06 |
2 | 903 | 1872.65 | 2086.40 | 2221.03 | 13.46 | 15.80 | 15.16 |
3 | 13 | 201.43 | 218.75 | 421.26 | 5.10 | 8.18 | 9.86 |
4 | 105 | 1475.34 | 1552.61 | 1668.01 | 11.80 | 10.42 | 12.79 |
5 | 162 | 1075.40 | 1050.57 | 1204.27 | 13.61 | 14.70 | 15.07 |
6 | 115 | 522.76 | 548.78 | 943.52 | 7.83 | 8.85 | 14.81 |
7 | 8 | 167.82 | 408.43 | 359.49 | 3.28 | 8.01 | 14.45 |
Average | 3177 | 1094.31 | 1244.72 | 1462.59 | 11.98 | 15.14 | 17.02 |
Percentage | −12.08% | −25.18% | −11.05% | −42.04% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Liu, C.; Li, J.; Miao, Y.; Zhao, L. Long-Term Trajectory Prediction for Oil Tankers via Grid-Based Clustering. J. Mar. Sci. Eng. 2023, 11, 1211. https://doi.org/10.3390/jmse11061211
Xu X, Liu C, Li J, Miao Y, Zhao L. Long-Term Trajectory Prediction for Oil Tankers via Grid-Based Clustering. Journal of Marine Science and Engineering. 2023; 11(6):1211. https://doi.org/10.3390/jmse11061211
Chicago/Turabian StyleXu, Xuhang, Chunshan Liu, Jianghui Li, Yongchun Miao, and Lou Zhao. 2023. "Long-Term Trajectory Prediction for Oil Tankers via Grid-Based Clustering" Journal of Marine Science and Engineering 11, no. 6: 1211. https://doi.org/10.3390/jmse11061211
APA StyleXu, X., Liu, C., Li, J., Miao, Y., & Zhao, L. (2023). Long-Term Trajectory Prediction for Oil Tankers via Grid-Based Clustering. Journal of Marine Science and Engineering, 11(6), 1211. https://doi.org/10.3390/jmse11061211