Global Changes Alter the Successions of Early Colonizers of Benthic Surfaces
Abstract
:1. Introduction
2. Epiphytes and Early Colonizers
3. The Role of Diatoms and the Mechanisms of Adhesion
Molecular and Genic Aspects of the Anchoring Mechanisms
4. Algal Colonization
5. Seagrasses and Other Living Substrates for Epiphytes
6. Ocean Acidification Effects on Epiphytes
Colonizer Organism | Effect on Colonization | Environment/Substrate | References |
---|---|---|---|
Calcified epiphytes | Strong reduction in the cover | P. oceanica leaves in shallow volcanic CO2 vents in Ischia island | [159] |
Calcareous algae | Disappearance within the acidified site | Rocky shore in Ischia island shallow volcanic CO2 vents | [161] |
Non-calcified algae | Become dominant in acidified site | ||
Turf algae | Declined the most in diversity and abundance | ||
Algal species with calcareous structures | Decline and disappear along the pH gradient | Rocky reef in CO2 shallow volcanic vents in Ischia Island | [147] |
Turf algae | Increase cover along the pH gradient | ||
Cover of coralline algae | Significantly reduced | Shikine island in Japan CO2 seeps in shallow waters | [163] |
Large canopy forming macroalgae | Significantly reduced abundance | ||
Low-profile algae | Increased in cover | ||
Turf algae | Increased in cover | ||
Coralline algae | Sharp decline in coralline species diversity in both sites | Seeps off the volcanic coasts of Italy (Vulcano Island, Mediterranean Sea) and Japan (Shikine Island, North-Western Pacific) | [165] |
Non-calcified macroalgae | More abundant | ||
Coralline algae | Significant negative effect of high pCO2 on calcification with partial tissue mortality at very high pCO2 | Laboratory experiment—mesocosm | [166] |
Filamentous turfs cover | Increase | ||
Coralline algae cover | Declines consistently with decrease in pH | Great Barrier Reef World Heritage Area (Australia) | [167] |
Taxonomic diversity | Strong reduction | P. oceanica orthotropic shoots collected by CO2 shallow volcanic vents in Ischia Island | [171] |
Encrusting red Algae (Corallinales) | Disappearence with the increasing acidification of seawater | ||
Encrusting and erect brown and green algae (Fleshy and Turf algae) | Become dominant with acidification | ||
Epiphytic coralline algal cover | Significant reduction with increased acidification of seawater | P. oceanica blades collected by CO2 shallow volcanic vents in Ischia Island | [172] |
7. Global Warming Modifies Epiphytic Communities
8. Biotechnological Issues
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Characklis, W.G.; Cooksey, K.E. Biofilms and Microbial Fouling. In Advances in Applied Microbiology; Laskin, A.I., Ed.; Academic Press: Cambridge, MA, USA, 1983; Volume 29, pp. 93–138. [Google Scholar]
- Molino, P.J.; Wetherbee, R. The Biology of Biofouling Diatoms and Their Role in the Development of Microbial Slimes. Biofouling J. Bioadhesion Biofilm Res. 2008, 24, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Wetherbee, R.; Lind, J.L.; Burke, J.; Quatrano, R.S. The First Kiss: Establishment and Control of Initial Adhesion by Raphid Diatoms. J. Phycol. 1998, 34, 9–15. [Google Scholar] [CrossRef]
- Huggett, M.J.; Nedved, B.T.; Hadfield, M.G. Effects of Initial Surface Wettability on Biofilm Formation and Subsequent Settlement of Hydroides elegans. Biofouling J. Bioadhesion Biofilm Res. 2009, 25, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.E.; O’toole, G.A. Microbial Biofilms: From Ecology to Molecular Genetics. Microbiol. Mol. Biol. Rev. 2000, 64, 847. [Google Scholar] [CrossRef] [Green Version]
- Zobell, C.E.; Allen, E.C. The Significance of Marine Bacteria in the Fouling of Submerged Surfaces. J. Bacteriol. 1935, 29, 239. [Google Scholar] [CrossRef] [Green Version]
- Wahl, M.; Goecke, F.; Labes, A.; Dobretsov, S.; Weinberger, F. The Second Skin: Ecological Role of Epibiotic Biofilms on Marine Organisms. Front. Microbiol. 2012, 3, 292. [Google Scholar] [CrossRef] [Green Version]
- Salta, M.; Wharton, J.A.; Blache, Y.; Stokes, K.R.; Briand, J.-F. Marine Biofilms on Artificial Surfaces: Structure and Dynamics. Environ. Microbiol. 2013, 15, 2879–2893. [Google Scholar] [CrossRef]
- Dang, H.; Lovell, C.R. Bacterial Primary Colonization and Early Succession on Surfaces in Marine Waters as Determined by Amplified RRNA Gene Restriction Analysis and Sequence Analysis of 16S RRNA Genes. Appl. Environ. Microbiol. 2000, 66, 467. [Google Scholar] [CrossRef] [Green Version]
- Allison, D.G. The Biofilm Matrix. Biofouling J. Bioadhesion Biofilm Res. 2010, 19, 139–149. [Google Scholar] [CrossRef]
- Flemming, H.; Wingender, F.; Szewzyk, U.; Steinberg, P.; Rice, S.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Annuk, H.; Moran, A. Microbial Biofilm-Related Polysaccharides in Biofouling and Corrosion. In Microbial Glycobiology; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Pawlik, J.R. Chemical ecology of the settlement of benthic marine invertebrates. In Oceanography and Marine Biology: An Annual Review; UCL Press: London, UK, 1992. [Google Scholar]
- Dobretsov, S.; Teplitski, M.; Paul, V. Mini-Review: Quorum Sensing in the Marine Environment and Its Relationship to Biofouling. Biofouling J. Bioadhesion Biofilm Res. 2009, 25, 413–427. [Google Scholar] [CrossRef]
- Landini, P.; Antoniani, D.; Burgess, J.G.; Nijland, R. Molecular Mechanisms of Compounds Affecting Bacterial Biofilm Formation and Dispersal. Appl. Microbiol. Biotechnol. 2010, 86, 813–823. [Google Scholar] [CrossRef]
- Vu, B.; Chen, M.; Crawford, R.J.; Ivanova, E.P. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules 2009, 14, 2535–2554. [Google Scholar] [CrossRef] [Green Version]
- Hadfield, M.G. Biofilms and Marine Invertebrate Larvae: What Bacteria Produce That Larvae Use to Choose Settlement Sites. Annu. Rev. Mar. Sci. 2011, 3, 453–470. [Google Scholar] [CrossRef]
- Mieszkin, S.; Martin-Tanchereau, P.; Callow, M.E.; Callow, J.A. Effect of Bacterial Biofilms Formed on Fouling-Release Coatings from Natural Seawater and Cobetia marina, on the Adhesion of Two Marine Algae. Biofouling J. Bioadhesion Biofilm Res. 2012, 28, 953–968. [Google Scholar] [CrossRef]
- Dang, H.; Lovell, C.R. Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol. Mol. Biol. Rev. 2016, 80, 91–138. [Google Scholar] [CrossRef] [Green Version]
- Terlizzi, A.; Conte, E.; Zupo, V.; Mazzella, L. Biological Succession on Silicone Fouling-Release Surfaces: Long-Term Exposure Tests in the Harbour of Ischia, Italy. Biofouling 2000, 15, 327–342. [Google Scholar] [CrossRef]
- Freckelton, M.L.; Nedved, B.T.; Hadfield, M.G. Induction of Invertebrate Larval Settlement; Different Bacteria, Different Mechanisms? Sci. Rep. 2017, 7, 42557. [Google Scholar] [CrossRef] [Green Version]
- Hadfield, M.G.; Nedved, B.T.; Wilbur, S.; Koehl, M.A.R. Biofilm Cue for Larval Settlement in Hydroides elegans (Polychaeta): Is Contact Necessary? Mar. Biol. 2014, 161, 2577–2587. [Google Scholar] [CrossRef]
- Jenkins, S.R.; Arenas, F.; Arrontes, J.; Bussell, J.; Castro, J.; Coleman, R.A.; Hawkins, S.J.; Kay, S.; Martínez, B.; Oliveros, J.; et al. European-Scale Analysis of Seasonal Variability in Limpet Grazing Activity and Microalgal Abundance. Mar. Ecol. Prog. Ser. 2001, 211, 193–203. [Google Scholar] [CrossRef]
- Patel, P.; Callow, M.E.; Joint, I.; Callow, J.A. Specificity in the Settlement—Modifying Response of Bacterial Biofilms towards Zoospores of the Marine Alga Enteromorpha. Environ. Microbiol. 2003, 5, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.C.K.; Thiyagarajan, V.; Cheung, S.C.K.; Qian, P.-Y. Roles of Bacterial Community Composition in Biofilms as a Mediator for Larval Settlement of Three Marine Invertebrates. Aquat. Microb. Ecol. 2005, 38, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Joint, I.; Callow, M.E.; Callow, J.A.; Clarke, K.R. The Attachment of Enteromorpha Zoospores to a Bacterial Biofilm Assemblage. Biofouling J. Bioadhesion Biofilm Res. 2009, 16, 151–158. [Google Scholar] [CrossRef]
- Wang, C.; Bao, W.-Y.; Gu, Z.-Q.; Li, Y.-F.; Liang, X.; Ling, Y.; Cai, S.-L.; Shen, H.-D.; Yang, J.-L. Larval Settlement and Metamorphosis of the Mussel Mytilus coruscus in Response to Natural Biofilms. Biofouling J. Bioadhesion Biofilm Res. 2012, 28, 249–256. [Google Scholar] [CrossRef]
- Hadfield, M.; Paul, V. Natural Chemical Cues for Settlement and Metamorphosis of Marine-Invertebrate Larvae. In Marine Chemical Ecology; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef]
- Krug, P.J. Defense of Benthic Invertebrates against Surface Colonization by Larvae: A Chemical Arms Race. In Antifouling Compounds; Marine Molecular Biotechnology; Springer: Berlin/Heidelberg, Germany, 2006; Volume 42, pp. 1–53. [Google Scholar] [CrossRef]
- Dahms, H.-U.; Dobretsov, S.; Qian, P.-Y. The Effect of Bacterial and Diatom Biofilms on the Settlement of the Bryozoan Bugula Neritina. J. Exp. Mar. Biol. Ecol. 2004, 313, 191–209. [Google Scholar] [CrossRef]
- Dobretsov, S.; Qian, P.-Y. Facilitation and Inhibition of Larval Attachment of the Bryozoan Bugula Neritina in Association with Mono-Species and Multi-Species Biofilms. J. Exp. Mar. Biol. Ecol. 2006, 333, 263–274. [Google Scholar] [CrossRef]
- Wieczorek, S.K.; Clare, A.S.; Todd, C.D. Inhibitory and Facilitatory Effects of Microbial Films on Settlement of Balanus Amphitrite Amphitrite Larvae. Mar. Ecol. Prog. Ser. 1995, 119, 221–228. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, C.C.C.R. Marine Biofilms: A Successful Microbial Strategy With Economic Implications. Front. Mar. Sci. 2018, 5, 126. [Google Scholar] [CrossRef] [Green Version]
- Sweat, L.H.; Swain, G.W.; Hunsucker, K.Z.; Johnson, K.B. Transported Biofilms and Their Influence on Subsequent Macrofouling Colonization. Biofouling 2017, 33, 433–449. [Google Scholar] [CrossRef]
- Cacabelos, E.; Ramalhosa, P.; Canning-Clode, J.; Troncoso, J.S.; Olabarria, C.; Delgado, C.; Dobretsov, S.; Gestoso, I. The Role of Biofilms Developed under Different Anthropogenic Pressure on Recruitment of Macro-Invertebrates. IJMS 2020, 21, 2030. [Google Scholar] [CrossRef] [Green Version]
- Stegen, J.C.; Lin, X.; Konopka, A.E.; Fredrickson, J.K. Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities. ISME J. 2012, 6, 1653–1664. [Google Scholar] [CrossRef] [Green Version]
- Scheuerman, T.R.; Camper, A.K.; Hamilton, M.A. Effects of Substratum Topography on Bacterial Adhesion. J. Colloid Interface Sci. 1998, 208, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Crawford, R.J.; Webb, H.K.; Truong, V.K.; Hasan, J.; Ivanova, E.P. Surface Topographical Factors Influencing Bacterial Attachment. Adv. Colloid Interface Sci. 2012, 179–182, 142–149. [Google Scholar] [CrossRef]
- Kardar, P.; Amini, R. A Study on the Effect of Surface Topography of Antifouling Coatings on the Settlement of Fouling Organisms. Pigment. Resin Technol. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Jones, P.R.; Cottrell, M.T.; Kirchman, D.L.; Dexter, S.C. Bacterial Community Structure of Biofilms on Artificial Surfaces in an Estuary. Microb. Ecol. 2006, 53, 153–162. [Google Scholar] [CrossRef]
- Fletcher, M.; Loeb, G.I. Influence of Substratum Characteristics on the Attachment of a Marine Pseudomonad to Solid Surfaces. Appl. Environ. Microbiol. 1979, 37, 67. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Nam, J.-H.; Kim, Y.-H.; Lee, K.-H.; Lee, D.-H. Bacterial Communities in the Initial Stage of Marine Biofilm Formation on Artificial Surfaces. J. Microbiol. 2008, 46, 174–182. [Google Scholar] [CrossRef]
- Baragi, L.V.; Anil, A.C. Synergistic Effect of Elevated Temperature, pCO2 and Nutrients on Marine Biofilm. Mar. Pollut. Bull. 2016, 105, 102–109. [Google Scholar] [CrossRef]
- Johnson, V.R.; Brownlee, C.; Rickaby, R.E.M.; Graziano, M.; Milazzo, M.; Hall-Spencer, J.M. Responses of Marine Benthic Microalgae to Elevated CO2. Mar. Biol. 2013, 160, 1813–1824. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.E.M.; Milazzo, M.; Rastrick, S.P.S.; Hall-Spencer, J.M.; Therriault, T.W.; Harley, C.D.G. Natural Acidification Changes the Timing and Rate of Succession, Alters Community Structure, and Increases Homogeneity in Marine Biofouling Communities. Glob. Chang. Biol. 2018, 24, e112–e127. [Google Scholar] [CrossRef] [PubMed]
- Sorte, C.J.B.; Williams, S.L.; Zerebecki, R.A. Ocean Warming Increases Threat of Invasive Species in a Marine Fouling Community. Ecology 2010, 91, 2198–2204. [Google Scholar] [CrossRef] [PubMed]
- Nasrolahi, A.; Stratil, S.B.; Jacob, K.J.; Wahl, M. A Protective Coat of Microorganisms on Macroalgae: Inhibitory Effects of Bacterial Biofilms and Epibiotic Microbial Assemblages on Barnacle Attachment. FEMS Microbiol. Ecol. 2012, 81, 583–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandeparker, L.; D’Costa, P.M.; Anil, A.C.; Sawant, S.S. Interactions of Bacteria with Diatoms: Influence on Natural Marine Biofilms. Mar. Ecol. 2014, 35, 233–248. [Google Scholar] [CrossRef]
- Khalaman, V.V.; Komendantov, A.Y.; Malavenda, S.S.; Mikhaylova, T.A. Algae versus Animals in Early Fouling Communities of the White Sea. Mar. Ecol. Prog. Ser. 2016, 553, 13–32. [Google Scholar] [CrossRef]
- Levich, A.P. Variational Modelling Theorems and Algocoenoses Functioning Principles. Ecol. Model. 2000, 131, 207–227. [Google Scholar] [CrossRef]
- Steinberg, P.D.; De Nys, R. Chemical Mediation of Colonization of Seaweed Surfaces. J. Phycol. 2002, 38, 621–629. [Google Scholar] [CrossRef]
- Wikström, S.A.; Pavia, H. Chemical Settlement Inhibition versus Post-Settlement Mortality as an Explanation for Differential Fouling of Two Congeneric Seaweeds. Oecologia 2004, 138, 223–230. [Google Scholar] [CrossRef]
- Round, F.E.; Crawford, R.M.; Mann, D.G. The Diatoms: Biology & Morphology of the Genera; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1990; ISBN 978-0-521-36318-1. [Google Scholar]
- Geider, R.J.; Delucia, E.H.; Falkowski, P.G.; Finzi, A.C.; Philip Grime, J.; Grace, J.; Kana, T.M.; La Roche, J.; Long, S.P.; Osborne, B.A.; et al. Primary Productivity of Planet Earth: Biological Determinants and Physical Constraints in Terrestrial and Aquatic Habitats. Glob. Chang. Biol. 2001, 7, 849–882. [Google Scholar] [CrossRef]
- Falciatore, A.; Bowler, C. Revealing the Molecular Secrets of Marine Diatoms. Annu. Rev. Plant Biol. 2002, 53, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Medlin, L.K. Why Silica or Better yet Why Not Silica? Speculations as to Why the Diatoms Utilise Silica as Their Cell Wall Material. Diatom Res. 2002, 17, 453–459. [Google Scholar] [CrossRef]
- Underwood, G.J.C.; Paterson, D.M. The Importance of Extracellular Carbohydrate Production by Marine Epipelic Diatoms. Adv. Bot. Res. 2003, 40, 183–240. [Google Scholar] [CrossRef]
- Hoagland, K.D.; Rosowski, J.R.; Gretz, M.R.; Roemer, S.C. Diatom Extracellular Polymeric Substances: Function, Fine Structure, Chemistry and Physiology. J. Phycol. 1993, 29, 537–566. [Google Scholar] [CrossRef]
- Cooksey, K.E.; Wigglesworth-Cooksey, B. Adhesion of Bacteria and Diatoms to Surfaces in the Sea: A Review. Aquat. Microb. Ecol. 1995, 9, 87–96. [Google Scholar] [CrossRef]
- Baier, R.E. Substrata Influences on Adhesion of Microorganisms and Their Resultant New Surface Properties. In Adsorption of Microorganisms to Surfaces; Wiley-Interscience: New York, NY, USA, 1980; pp. 59–104. [Google Scholar]
- Cooksey, K.E. Requirement for Calcium in Adhesion of a Fouling Diatom to Glass. Appl. Environ. Microbiol. 1981, 41, 1378–1382. [Google Scholar] [CrossRef] [Green Version]
- Cooksey, B.; Cooksey, K. Chemical Signal-Response in Diatoms of the Genus Amphora. J. Cell Sci. 1988, 91, 523–529. [Google Scholar] [CrossRef]
- Dugdale, T.M.; Dagastine, R.; Chiovitti, A.; Mulvaney, P.; Wetherbee, R. Single Adhesive Nanofibers from a Live Diatom Have the Signature Fingerprint of Modular Proteins. Biophys. J. 2005, 89, 4252–4260. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, D.H.; Underwood, G.J.C.; Taylor, A.R.; Brownlee, C. Calcium Release From Intracellular Stores Is Necessary For The Photophobic Response In The Benthic Diatom Navicula perminuta (Bacillariophyceae). J. Phycol. 2012, 48, 675–681. [Google Scholar] [CrossRef]
- Heath, C.R.; Leadbeater, B.C.S.; Callow, M.E. Effect of Inhibitors on Calcium Carbonate Deposition Mediated by Freshwater Algae. J. Appl. Phycol. 1995, 7, 367–380. [Google Scholar] [CrossRef]
- Gutiérrez-Medina, B.; Peña Maldonado, A.I.; García-Meza, J.V. Mechanical Testing of Particle Streaming and Intact Extracellular Mucilage Nanofibers Reveal a Role of Elastic Force in Diatom Motility. Phys. Biol. 2022, 19, 056002. [Google Scholar] [CrossRef]
- Bedoshvili, Y.D.; Gneusheva, K.V.; Popova, M.S.; Avezova, T.N.; Arsentyev, K.Y.; Likhoshway, Y.V. Frustule Morphogenesis of Raphid Pennate Diatom Encyonema ventricosum (Agardh) Grunow. Protoplasma 2018, 255, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Lind, J.L.; Heimann, K.; Miller, E.A.; Van Vliet, C.; Hoogenraad, N.J.; Wetherbee, R. Substratum Adhesion and Gliding in a Diatom Are Mediated by Extracellular Proteoglycans. Planta 1997, 203, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.E.; Cooksey, K.E.; Priscu, J.C. Stimulation of Bacterial DNA Synthesis by Algal Exudates in Attached Algal-Bacterial Consortia. Appl. Environ. Microbiol. 1986, 52, 1177–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okabe, S.; Hirata, K.; Watanabe, Y. Significance of the Spatial Distribution of Microbial Species in Mixed-population Biofilms. Biofouling 1997, 11, 119–136. [Google Scholar] [CrossRef]
- Murray, R.E.; Cooksey, K.E.; Priscu, J.C. Influence of Physical Disruption on Growth of Attached Bacteria. Appl. Environ. Microbiol. 1987, 53, 2997–2999. [Google Scholar] [CrossRef] [Green Version]
- Källén, J.; Muller, H.; Franken, M.L.; Crisp, A.; Stroh, C.; Pillay, D.; Lawrence, C. Seagrass-Epifauna Relationships in a Temperate South African Estuary: Interplay between Patch-Size, within-Patch Location and Algal Fouling. Estuar. Coast. Shelf Sci. 2012, 113, 213–220. [Google Scholar] [CrossRef]
- Chen, M.; Qi, H.; Intasen, W.; Kanchanapant, A.; Wang, C.; Zhang, A. Distributions of Diatoms in Surface Sediments from the Chanthaburi Coast, Gulf of Thailand, and Correlations with Environmental Factors. Reg. Stud. Mar. Sci. 2020, 34, 100991. [Google Scholar] [CrossRef]
- Lewin, R.A. (Ed.) Physiology and Biochemistry of Algae; Academic Press: New York, NY, USA, 1962; ISBN 978-0-12-446150-5. [Google Scholar]
- Cooksey, K.E.; Chansang, H. Isolation and Physiological Studies on Three Isolates of Amphora (Bacillariophyceae). J. Phycol. 1976, 12, 455–460. [Google Scholar] [CrossRef]
- Loeb, G.; Laster, D.; Gracik, T.; Taylor, D. The Influence of Microbial Fouling Films on Hydrodynamic Drag of Rotating Discs. In Marine Biodeterioration: An Interdisciplinary Study; Springer: New York, NY, USA, 1984; pp. 88–94. ISBN 978-1-4615-9722-3. [Google Scholar]
- Terlizzi, A.; Fraschetti, S.; Gianguzza, P.; Faimali, M.; Boero, F. Environmental Impact of Antifouling Technologies: State of the Art and Perspectives. Aquat. Conserv. Mar. Freshw. Ecosyst. 2001, 11, 311–317. [Google Scholar] [CrossRef]
- Buhmann, M.T.; Poulsen, N.; Klemm, J.; Kennedy, M.R.; Sherrill, C.D.; Kröger, N. A Tyrosine-Rich Cell Surface Protein in the Diatom Amphora coffeaeformis Identified through Transcriptome Analysis and Genetic Transformation. PLoS ONE 2014, 9, e110369. [Google Scholar] [CrossRef]
- Poulsen, N.; Kröger, N.; Harrington, M.J.; Brunner, E.; Paasch, S.; Buhmann, M.T. Isolation and Biochemical Characterization of Underwater Adhesives from Diatoms. Biofouling 2014, 30, 513–523. [Google Scholar] [CrossRef]
- Hudon, C.; Bourget, E. Initial Colonization of Artificial Substrate: Community Development and Structure Studied by Scanning Electron Microscopy. Can. J. Fish. Aquat. Sci. 1981, 38, 1371–1384. [Google Scholar] [CrossRef]
- Hodson, O.M.; Monty, J.P.; Molino, P.J.; Wetherbee, R. Novel Whole Cell Adhesion Assays of Three Isolates of the Fouling Diatom Amphora coffeaeformis Reveal Diverse Responses to Surfaces of Different Wettability. Biofouling 2012, 28, 381–393. [Google Scholar] [CrossRef]
- Finlay, J.A.; Callow, M.E.; Ista, L.K.; Lopez, G.P.; Callow, J.A. The Influence of Surface Wettability on the Adhesion Strength of Settled Spores of the Green Alga Enteromorpha and the Diatom Amphora. Integr. Comp. Biol. 2002, 42, 1116–1122. [Google Scholar] [CrossRef]
- Görlich, S.; Pawolski, D.; Zlotnikov, I.; Kröger, N. Control of Biosilica Morphology and Mechanical Performance by the Conserved Diatom Gene Silicanin-1. Commun. Biol. 2019, 2, 245. [Google Scholar] [CrossRef] [Green Version]
- Lachnit, M.; Buhmann, M.T.; Klemm, J.; Kröger, N.; Poulsen, N. Identification of Proteins in the Adhesive Trails of the Diatom Amphora coffeaeformis. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190196. [Google Scholar] [CrossRef] [Green Version]
- Mazzella, L.; Spinoccia, L. Epiphytic Diatoms of Leaf Blades of the Mediterranean Seagrass Posidonia oceanica (L.) Delile. G. Bot. Ital. 1992, 126, 752–754. [Google Scholar] [CrossRef]
- De Stefano, M.; Marino, D.; Mazzella, L. Marine taxa of Cocconeis on leaves of Posidonia oceanica, including a new species and two new varieties. Eur. J. Phycol. 2000, 35, 225–242. [Google Scholar] [CrossRef] [Green Version]
- Mabrouk, L.; Ben Brahim, M.; Hamza, A.; Mahfoudhi, M.; Bradai, M.N. A Comparison of Abundance and Diversity of Epiphytic Microalgal Assemblages on the Leaves of the Seagrasses Posidonia oceanica (L.) and Cymodocea nodosa (Ucria) Asch in Eastern Tunisia. J. Mar. Sci. 2014, 2014, 275305. [Google Scholar] [CrossRef] [Green Version]
- Kanjer, L.; Mucko, M.; Car, A.; Bosak, S. Epiphytic Diatoms on Posidonia oceanica (L.) Delile Leaves from Eastern Adriatic Sea. Nat. Croat. 2019, 28, 1–20. [Google Scholar]
- Torres-Monroy, I.; Ullrich, M.S. Identification of Bacterial Genes Expressed During Diatom-Bacteria Interactions Using an in Vivo Expression Technology Approach. Front. Mar. Sci. 2018, 5, 200. [Google Scholar] [CrossRef] [Green Version]
- Sörenson, E.; Capo, E.; Farnelid, H.; Lindehoff, E.; Legrand, C. Temperature Stress Induces Shift From Co-Existence to Competition for Organic Carbon in Microalgae-Bacterial Photobioreactor Community—Enabling Continuous Production of Microalgal Biomass. Front. Microbiol. 2021, 12, 607601. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Chaiboonchoe, A.; Dohai, B.; Sultana, M.; Baffour, K.; Alzahmi, A.; Weston, J.; Al Khairy, D.; Daakour, S.; Jaiswal, A.; et al. GPCR Genes as Activators of Surface Colonization Pathways in a Model Marine Diatom. iScience 2020, 23, 101424. [Google Scholar] [CrossRef] [PubMed]
- Willis, A.; Eason Hubbard, M.; Hodson, O.; Bowler, C.; Wetherbee, R. Adhesion Molecules from the Diatom Phaeodactylum tricornutum (Bacillariophyceae): Genomic Identification by Amino-Acid Profiling and in Vivo Analysis. J. Phycol. 2014, 50, 837–849. [Google Scholar] [CrossRef]
- Johnson, K.L.; Kibble, N.A.J.; Bacic, A.; Schultz, C.J. A Fasciclin-Like Arabinogalactan-Protein (FLA) Mutant of Arabidopsis thaliana, fla1, Shows Defects in Shoot Regeneration. PLoS ONE 2011, 6, e25154. [Google Scholar] [CrossRef] [Green Version]
- Osuna-Cruz, C.M.; Bilcke, G.; Vancaester, E.; De Decker, S.; Bones, A.M.; Winge, P.; Poulsen, N.; Bulankova, P.; Verhelst, B.; Audoor, S.; et al. The Seminavis robusta Genome Provides Insights into the Evolutionary Adaptations of Benthic Diatoms. Nat. Commun. 2020, 11, 3320. [Google Scholar] [CrossRef]
- Hennebert, E.; Wattiez, R.; Waite, J.H.; Flammang, P. Characterization of the Protein Fraction of the Temporary Adhesive Secreted by the Tube Feet of the Sea Star Asterias rubens. Biofouling 2012, 28, 289–303. [Google Scholar] [CrossRef]
- Subramanian, K.; Pravallika, M.; Menon, V. Evidence for stress-induced bleeding in a patient with von Willebrand factor deficiency. Indian J. Psychol. Med. 2018, 40, 292–295. [Google Scholar] [CrossRef]
- Lebret, K.; Thabard, M.; Hellio, C. Algae as Marine Fouling Organisms: Adhesion Damage and Prevention. In Advances in Marine Antifouling Coatings and Technologies; CRC Press: Boca Raton, FL, USA, 2009; pp. 80–112. [Google Scholar]
- Clare, A.; Aldred, N. Surface Colonisation by Marine Organisms and Its Impact on Antifouling Research. In Advances in Marine Antifouling Coatings and Technologies; CRC Press: Boca Raton, FL, USA, 2009; pp. 46–79. ISBN 978-1-84569-386-2. [Google Scholar]
- Van Loosdrecht, M.C.M.; Lyklema, J.; Norde, W.; Zehnder, A.J.B. Bacterial Adhesion: A Physicochemical Approach. Microb. Ecol. 1989, 17, 1–15. [Google Scholar] [CrossRef]
- Michael, T.S.; Shin, H.W.; Hanna, R.; Spafford, D.C. A Review of Epiphyte Community Development: Surface Interactions and Settlement on Seagrass. J. Environ. Biol. 2008, 29, 629–638. [Google Scholar]
- Sterrenburg, F.A.S.; Erftemeijer, P.L.A.; Nienhuis, P.H. Diatoms as Epiphytes on Seagrasses in South Sulawesi (Indonesia) Comparison with Growth on Inert Substrata. Bot. Mar. 1995, 38, 1–8. [Google Scholar] [CrossRef]
- Prado, P.; Alcoverro, T.; Martínez-Crego, B.; Vergés, A.; Pérez, M.; Romero, J. Macrograzers Strongly Influence Patterns of Epiphytic Assemblages in Seagrass Meadows. J. Exp. Mar. Biol. Ecol. 2007, 350, 130–143. [Google Scholar] [CrossRef]
- Drake, L.A.; Dobbs, F.C.; Zimmerman, R.C. Effects of Epiphyte Load on Optical Properties and Photosynthetic Potential of the Seagrasses Thalassia testudinum Banks Ex König and Zostera marina L. Limnol. Oceanogr. 2003, 48, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Mazzella, L.; Alberte, R.S. Light Adaptation and the Role of Autotrophic Epiphytes in Primary Production of the Temperate Seagrass, Zostera marina L. J. Exp. Mar. Biol. Ecol. 1986, 100, 165–180. [Google Scholar] [CrossRef]
- Michael, T.; Smith, C. Lectins Probe Molecular Films in Biofouling: Characterization of Early Films on Non-Living and Living Surfaces. Mar. Ecol. Prog. Ser. 1995, 119, 229–236. [Google Scholar] [CrossRef]
- Callow, M.E.; Callow, J.A. Enhanced Adhesion and Chemoattraction of Zoospores of the Fouling Alga Enteromorpha to Some Foul-release Silicone Elastomers. Biofouling 1998, 13, 157–172. [Google Scholar] [CrossRef]
- Xiao, L.; Finlay, J.A.; Röhrig, M.; Mieszkin, S.; Worgull, M.; Hölscher, H.; Callow, J.A.; Callow, M.E.; Grunze, M.; Rosenhahn, A. Topographic Cues Guide the Attachment of Diatom Cells and Algal Zoospores. Biofouling 2018, 34, 86–97. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Lavery, P.S.; van Keulen, M. Epiphytes of Seagrasses. In Seagrasses: Biology, Ecology and Conservation; Springer: Dordrecht, The Netherlands, 2006; pp. 441–461. ISBN 978-1-4020-2942-4. [Google Scholar]
- Buia, M.C.; Zupo, V.; Mazzella, L. Primary Production and Growth Dynamics in Posidonia oceanica. Mar. Ecol. 1992, 13, 2–16. [Google Scholar] [CrossRef]
- Reyes, J.; Sansón, M.; Afonso-Carrillo, J. Distribution of the Epiphytes along the Leaves of Cymodocea nodosa in the Canary Islands. Bot. Mar. 1998, 41, 543–551. [Google Scholar] [CrossRef]
- Uku, J.; Björk, M. The Distribution of Epiphytic Algae on Three Kenyan Seagrass Species. South Afr. J. Bot. 2001, 67, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Mateo, M.; Cebrian, J.; Dunton, K.; Mutchler, T.; Larkum, A.; Orth, R.; Duarte, C. Carbon Flux in Seagrass Ecosystems. In Seagrasses: Biology, Ecology and Conservation; Springer: Dordrecht, The Netherlands, 2006; pp. 159–192. ISBN 978-1-4020-2942-4. [Google Scholar]
- Mazzella, L.; Scipione, M.; Gambi, M.C.; Buia, M.; Lorenti, M.; Zupo, V.; Cancemi, G. The Mediterranean Seagrass Posidonia oceanica and Cymodocea nodosa. In Proceedings of the First International Conference on the Mediterranean Coastal Environment, MEDCOAST 93, Antalya, Turkey, 2–5 November 1993; pp. 103–116. [Google Scholar]
- Kuo, J.; Hartog, C. den Seagrass Morphology, Anatomy, and Ultrastructure. In Seagrasses: Biology, Ecology and Conservation; Larkum, A.W.D., Orth, R.J., Duarte, C.M., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 51–87. ISBN 978-1-4020-2983-7. [Google Scholar]
- Onuf, C.P. Biofouling and the Continuous Monitoring of Underwater Light from a Seagrass Perspective. Estuaries Coasts 2006, 29, 8. [Google Scholar] [CrossRef]
- Trautman, D.A.; Borowitzka, M.A. Distribution of the Epiphytic Organisms on Posidonia australis and P. sinuosa, Two Seagrasses with Differing Leaf Morphology. Mar. Ecol. Prog. Ser. 1999, 179, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Sekar, R.; Venugopalan, V.P.; Satpathy, K.K.; Nair, K.V.K.; Rao, V.N.R. Laboratory Studies on Adhesion of Microalgae to Hard Substrates. Hydrobiologia 2004, 512, 109–116. [Google Scholar] [CrossRef]
- Pillay, D.; Waspe, C. Grazer Specialisation and Temperature Effects on Epiphytic Fouling: Conservation Implications for a Temperate African Seagrass (Zostera capensis). Mar. Ecol. Prog. Ser. 2019, 629, 235–241. [Google Scholar] [CrossRef]
- Hassenrück, C.; Hofmann, L.C.; Bischof, K.; Ramette, A. Seagrass Biofilm Communities at a Naturally CO2-Rich Vent. Environ. Microbiol. Rep. 2015, 7, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Heitzman, J.M.; Caputo, N.; Yang, S.-Y.; Harvey, B.P.; Agostini, S. Recurrent Disease Outbreak in a Warm Temperate Marginal Coral Community. Mar. Pollut. Bull. 2022, 182, 113954. [Google Scholar] [CrossRef]
- Moore, A.; Duffy, J. Foundation Species Identity and Trophic Complexity Affect Experimental Seagrass Communities. Mar. Ecol. Prog. Ser. 2016, 556, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.S.; Silliman, B.R. A Facilitation Cascade Enhances Local Biodiversity in Seagrass Beds. Diversity 2019, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Elven, B.; Lavery, P.; Kendrick, G. Reefs as Contributors to Diversity of Epiphytic Macroalgae Assemblages in Seagrass Meadows. Mar. Ecol. Prog. Ser. 2004, 276, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Frankovich, T.A.; Armitage, A.R.; Wachnicka, A.H.; Gaiser, E.E.; Fourqurean, J.W. Nutrient Effects on Seagrass Epiphyte Community Structure in Florida Bay. J. Phycol. 2009, 45, 1010–1020. [Google Scholar] [CrossRef]
- Campbell, J.E.; Fourqurean, J.W. Ocean Acidification Outweighs Nutrient Effects in Structuring Seagrass Epiphyte Communities. J. Ecol. 2014, 102, 730–737. [Google Scholar] [CrossRef]
- Mutalipassi, M.; Fink, P.; Maibam, C.; Porzio, L.; Buia, M.C.; Gambi, M.C.; Patti, F.P.; Scipione, M.B.; Lorenti, M.; Zupo, V. Ocean Acidification Alters the Responses of Invertebrates to Wound-Activated Infochemicals Produced by Epiphytes of the Seagrass Posidonia oceanica. J. Exp. Mar. Biol. Ecol. 2020, 530–531, 151435. [Google Scholar] [CrossRef]
- Berlinghof, J.; Peiffer, F.; Marzocchi, U.; Munari, M.; Quero, G.M.; Dennis, L.; Wild, C.; Cardini, U. The Role of Epiphytes in Seagrass Productivity under Ocean Acidification. Sci. Rep. 2022, 12, 6249. [Google Scholar] [CrossRef]
- Mutalipassi, M.; Mazzella, V.; Schott, M.; Fink, P.; Glaviano, F.; Porzio, L.; Lorenti, M.; Buia, M.C.; von Elert, E.; Zupo, V. Ocean Acidification Affects Volatile Infochemicals Production and Perception in Fauna and Flora Associated With Posidonia oceanica (L.) Delile. Front. Mar. Sci. 2022, 9, 101. [Google Scholar] [CrossRef]
- Guan, C.; Saha, M.; Weinberger, F. Chemical Defence of a Seagrass against Microfoulers and Its Seasonal Dynamics. Appl. Sci. 2019, 9, 1258. [Google Scholar] [CrossRef] [Green Version]
- Jüttner, F.; Messina, P.; Patalano, C.; Zupo, V. Odour Compounds of the Diatom Cocconeis scutellum: Effects on Benthic Herbivores Living on Posidonia oceanica. Mar. Ecol. Prog. Ser. 2010, 400, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Sammarco, P.W.; Coll, J.C. Chemical Adaptations in the Octocorallia: Evolutionary Considerations. Mar. Ecol. Prog. Ser. 1992, 88, 93–104. [Google Scholar] [CrossRef]
- Haslbeck, E.G.; Kavanagh, C.J.; Shin, H.W.; Banta, W.C.; Song, P.; Loeb, G.I. Minimum Effective Release Rate of Antifoulants (2): Measurement of the Effect of TBT and Zosteric Acid on Hard Fouling. Biofouling 1996, 10, 175–186. [Google Scholar] [CrossRef]
- Caldeira, K.; Wickett, M.E. Anthropogenic Carbon and Ocean PH. Nature 2003, 425, 365. [Google Scholar] [CrossRef] [Green Version]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean Acidification: The Other CO2 Problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef] [Green Version]
- Feely, R.A.; Sabine, C.L.; Lee, K.; Berelson, W.; Kleypas, J.; Fabry, V.J.; Millero, F.J. Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans. Science 2004, 305, 362–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattuso, J.-P.; Hansson, L. Ocean Acidification; OUP: Oxford, UK, 2011; ISBN 978-0-19-959109-1. [Google Scholar]
- Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; et al. The Geological Record of Ocean Acidification. Science 2012, 335, 1058–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F.; et al. Anthropogenic Ocean Acidification over the Twenty-First Century and Its Impact on Calcifying Organisms. Nature 2005, 437, 681–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tans, P. An Accounting of the Observed Increase in Oceanic and Atmospheric CO2 and the Outlook for the Future. Oceanography 2009, 22, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Hall-Spencer, J.M.; Harvey, B.P. Ocean Acidification Impacts on Coastal Ecosystem Services Due to Habitat Degradation. Emerg. Top. Life Sci. 2019, 3, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.E.M.; Therriault, T.W.; Harley, C.D.G. Field-Based Experimental Acidification Alters Fouling Community Structure and Reduces Diversity. J. Anim. Ecol. 2016, 85, 1328–1339. [Google Scholar] [CrossRef]
- Speights, C.J.; McCoy, M.W. Range Expansion of a Fouling Species Indirectly Impacts Local Species Interactions. PeerJ 2017, 5, e3911. [Google Scholar] [CrossRef] [Green Version]
- Dobretsov, S.; Coutinho, R.; Rittschof, D.; Salta, M.; Ragazzola, F.; Hellio, C. The Oceans Are Changing: Impact of Ocean Warming and Acidification on Biofouling Communities. Biofouling 2019, 35, 585–595. [Google Scholar] [CrossRef]
- Ragazzola, F.; Foster, L.C.; Form, A.; Anderson, P.S.L.; Hansteen, T.H.; Fietzke, J. Ocean Acidification Weakens the Structural Integrity of Coralline Algae. Glob. Chang. Biol. 2012, 18, 2804–2812. [Google Scholar] [CrossRef]
- Hale, R.; Calosi, P.; Mieszkowska, N.; Widdicombe, S.; McNeill, L. Predicted Levels of Future Ocean Acidification and Temperature Rise Could Alter Community Structure and Biodiversity in Marine Benthic Communities. Oikos 2011, 120, 661–674. [Google Scholar] [CrossRef]
- Teixidó, N.; Gambi, M.C.; Parravacini, V.; Kroeker, K.; Micheli, F.; Villéger, S.; Ballesteros, E. Functional Biodiversity Loss along Natural CO2 Gradients. Nat. Commun. 2018, 9, 5149. [Google Scholar] [CrossRef] [Green Version]
- Zupo, V.; Buia, M.C.; Mazzella, L. A Production Model for Posidonia oceanica Based on Temperature. Estuar. Coast. Shelf Sci. 1997, 44, 483–492. [Google Scholar] [CrossRef]
- Duncan, R.J.; Nielsen, D.A.; Sheehan, C.E.; Deppeler, S.; Hancock, A.M.; Schulz, K.G.; Davidson, A.T.; Petrou, K. Ocean Acidification Alters the Nutritional Value of Antarctic Diatoms. New Phytol. 2022, 233, 1813–1827. [Google Scholar] [CrossRef]
- Kroeker, K.J.; Kordas, R.L.; Crim, R.; Hendriks, I.E.; Ramajo, L.; Singh, G.S.; Duarte, C.M.; Gattuso, J.-P. Impacts of Ocean Acidification on Marine Organisms: Quantifying Sensitivities and Interaction with Warming. Glob. Chang. Biol. 2013, 19, 1884–1896. [Google Scholar] [CrossRef] [Green Version]
- Ross, P.M.; Parker, L.; O’Connor, W.A.; Bailey, E.A. The Impact of Ocean Acidification on Reproduction, Early Development and Settlement of Marine Organisms. Water 2011, 3, 1005–1030. [Google Scholar] [CrossRef] [Green Version]
- Asnicar, D.; Zanovello, L.; Badocco, D.; Munari, M.; Marin, M.G. Different Ecological Histories of Sea Urchins Acclimated to Reduced PH Influence Offspring Response to Multiple Stressors. Environ. Res. 2022, 212, 113131. [Google Scholar] [CrossRef]
- Foo, S.A.; Byrne, M. Marine Gametes in a Changing Ocean: Impacts of Climate Change Stressors on Fecundity and the Egg. Mar. Environ. Res. 2017, 128, 12–24. [Google Scholar] [CrossRef]
- Milazzo, M.; Cattano, C.; Alonzo, S.H.; Foggo, A.; Gristina, M.; Rodolfo-Metalpa, R.; Sinopoli, M.; Spatafora, D.; Stiver, K.A.; Hall-Spencer, J.M. Ocean Acidification Affects Fish Spawning but Not Paternity at CO2 Seeps. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161021. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.; Gattuso, J.-P. Response of Mediterranean Coralline Algae to Ocean Acidification and Elevated Temperature. Glob. Chang. Biol. 2009, 15, 2089–2100. [Google Scholar] [CrossRef]
- Ragazzola, F.; Marchini, A.; Adani, M.; Bordone, A.; Castelli, A.; Cerrati, G.; Kolzenburg, R.; Langeneck, J.; di Marzo, C.; Nannini, M.; et al. An Intertidal Life: Combined Effects of Acidification and Winter Heatwaves on a Coralline Alga (Ellisolandia elongata) and Its Associated Invertebrate Community. Mar. Environ. Res. 2021, 169, 105342. [Google Scholar] [CrossRef]
- Langer, G.; Nehrke, G.; Probert, I.; Ly, J.; Ziveri, P. Strain-Specific Responses of Emiliania huxleyi to Changing Seawater Carbonate Chemistry. Biogeosciences 2009, 6, 2637–2646. [Google Scholar] [CrossRef] [Green Version]
- Albright, R.; Takeshita, Y.; Koweek, D.A.; Ninokawa, A.; Wolfe, K.; Rivlin, T.; Nebuchina, Y.; Young, J.; Caldeira, K. Carbon Dioxide Addition to Coral Reef Waters Suppresses Net Community Calcification. Nature 2018, 555, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Hall-Spencer, J.M.; Rodolfo-Metalpa, R.; Martin, S.; Ransome, E.; Fine, M.; Turner, S.M.; Rowley, S.J.; Tedesco, D.; Buia, M.C. Volcanic Carbon Dioxide Vents Show Ecosystem Effects of Ocean Acidification. Nature 2008, 454, 96–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porzio, L.; Garrard, S.L.; Buia, M.C. The Effect of Ocean Acidification on Early Algal Colonization Stages at Natural CO2 Vents. Mar. Biol. 2013, 160, 2247–2259. [Google Scholar] [CrossRef]
- Porzio, L.; Buia, M.C.; Hall-Spencer, J.M. Effects of Ocean Acidification on Macroalgal Communities. J. Exp. Mar. Biol. Ecol. 2011, 400, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Vizzini, S.; Martínez-Crego, B.; Andolina, C.; Massa-Gallucci, A.; Connell, S.D.; Gambi, M.C. Ocean Acidification as a Driver of Community Simplification via the Collapse of Higher-Order and Rise of Lower-Order Consumers. Sci. Rep. 2017, 7, 4018. [Google Scholar] [CrossRef] [Green Version]
- Agostini, S.; Harvey, B.P.; Wada, S.; Kon, K.; Milazzo, M.; Inaba, K.; Hall-Spencer, J.M. Ocean Acidification Drives Community Shifts towards Simplified Non-Calcified Habitats in a Subtropical−temperate Transition Zone. Sci. Rep. 2018, 8, 11354. [Google Scholar] [CrossRef] [Green Version]
- Harvey, B.P.; Kon, K.; Agostini, S.; Wada, S.; Hall-Spencer, J.M. Ocean Acidification Locks Algal Communities in a Species-Poor Early Successional Stage. Glob. Chang. Biol. 2021, 27, 2174–2187. [Google Scholar] [CrossRef]
- Peña, V.; Harvey, B.P.; Agostini, S.; Porzio, L.; Milazzo, M.; Horta, P.; Le Gall, L.; Hall-Spencer, J.M. Major Loss of Coralline Algal Diversity in Response to Ocean Acidification. Glob. Chang. Biol. 2021, 27, 4785–4798. [Google Scholar] [CrossRef]
- Short, J.; Kendrick, G.A.; Falter, J.; McCulloch, M.T. Interactions between Filamentous Turf Algae and Coralline Algae Are Modified under Ocean Acidification. J. Exp. Mar. Biol. Ecol. 2014, 456, 70–77. [Google Scholar] [CrossRef]
- Smith, J.N.; Mongin, M.; Thompson, A.; Jonker, M.J.; De’ath, G.; Fabricius, K.E. Shifts in Coralline Algae, Macroalgae, and Coral Juveniles in the Great Barrier Reef Associated with Present-Day Ocean Acidification. Glob. Chang. Biol. 2020, 26, 2149–2160. [Google Scholar] [CrossRef]
- Schwartz, W. J. D. Milliman (Editor), Marine Carbonates (Recent Sedimentary Carbonates, Part I). XV, 375 S., 94 Abb., 80 Tab., 39 Taf. Berlin–Heidelberg–New York 1974: Springer-Verlag. DM 66,00. Z. Allg. Mikrobiol. 1976, 16, 242. [Google Scholar] [CrossRef]
- Donnarumma, L.; Lombardi, C.; Cocito, S.; Gambi, M.C. Settlement Pattern of Posidonia oceanica along a Gradient of Ocean Acidification: An Approach with Mimics. Mediterr. Mar. Sci. 2014, 15, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Casola, E.; Scardi, M.; Mazzella, L.; Fresi, E. Structure of the Epiphytic Community of Posidonia oceanica Leaves in a Shallow Meadow. Mar. Ecol. 1987, 8, 285–296. [Google Scholar] [CrossRef]
- Mecca, S.; Casoli, E.; Ardizzone, G.; Gambi, M.C. Effects of Ocean Acidification on Phenology and Epiphytes of the Seagrass Posidonia oceanica at Two CO2 Vent Systems of Ischia (Italy). Mediterr. Mar. Sci. 2020, 21, 70–83. [Google Scholar] [CrossRef]
- Martin, S.; Rodolfo-Metalpa, R.; Ransome, E.; Rowley, S.; Buia, M.-C.; Gattuso, J.-P.; Hall-Spencer, J. Effects of Naturally Acidified Seawater on Seagrass Calcareous Epibionts. Biol. Lett. 2008, 4, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Mirasole, A.; Badalamenti, F.; Di Franco, A.; Gambi, M.C.; Teixidó, N. Boosted Fish Abundance Associated with Posidonia oceanica Meadows in Temperate Shallow CO2 Vents. Sci. Total Environ. 2021, 771, 145438. [Google Scholar] [CrossRef]
- Torstensson, A.; Chierici, M.; Wulff, A. The Influence of Increased Temperature and Carbon Dioxide Levels on the Benthic/Sea Ice Diatom Navicula directa. Polar Biol. 2012, 35, 205–214. [Google Scholar] [CrossRef]
- Tortell, P.D.; Rau, G.H.; Morel, F.M.M. Inorganic Carbon Acquisition in Coastal Pacific Phytoplankton Communities. Limnol. Oceanogr. 2000, 45, 1485–1500. [Google Scholar] [CrossRef]
- Hopkinson, B.M.; Dupont, C.L.; Allen, A.E.; Morel, F.M.M. Efficiency of the CO2-Concentrating Mechanism of Diatoms. Proc. Natl. Acad. Sci. USA 2011, 108, 3830–3837. [Google Scholar] [CrossRef] [Green Version]
- Kiørboe, T. Turbulence, Phytoplankton Cell Size, and the Structure of Pelagic Food Webs. In Advances in Marine Biology; Blaxter, J.H.S., Southward, A.J., Eds.; Academic Press: Cambridge, MA, USA, 1993; Volume 29, pp. 1–72. [Google Scholar]
- Zunino, S.; Canu, D.M.; Zupo, V.; Solidoro, C. Direct and Indirect Impacts of Marine Acidification on the Ecosystem Services Provided by Coralligenous Reefs and Seagrass Systems. Glob. Ecol. Conserv. 2019, 18, e00625. [Google Scholar] [CrossRef]
- Chapin, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of Changing Biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Wahl, M.; Shahnaz, L.; Dobretsov, S.; Saha, M.; Symanowski, F.; David, K.; Lachnit, T.; Vasel, M.; Weinberger, F. Ecology of Antifouling Resistance in the Bladder Wrack Fucus vesiculosus: Patterns of Microfouling and Antimicrobial Protection; Mar. Ecol. Prog. Ser. 2010, 411, 33–48. [Google Scholar] [CrossRef]
- Beltrand, M.; Dineen, A.S.; Hitzeroth, C.; Baum, B.; de Cerff, C.; de Vos, C.; Lewis, J.; Zaroufis, S.; Pillay, D. Warming Effects on Two Autogenic Engineers (Zostera capensis and Gracilaria gracilis): Consequences for Macrofaunal Assemblages and Benthic Heterogeneity in Intertidal Sandflat Ecosystems. Estuaries Coasts 2022, 45, 247–259. [Google Scholar] [CrossRef]
- Marbà, N.; Duarte, C.M. Mediterranean Warming Triggers Seagrass (Posidonia oceanica) Shoot Mortality. Glob. Chang. Biol. 2010, 16, 2366–2375. [Google Scholar] [CrossRef]
- Lewandowska, A.M.; Boyce, D.G.; Hofmann, M.; Matthiessen, B.; Sommer, U.; Worm, B. Effects of Sea Surface Warming on Marine Plankton. Ecol. Lett. 2014, 17, 614–623. [Google Scholar] [CrossRef]
- Li, W.K.W.; McLaughlin, F.A.; Lovejoy, C.; Carmack, E.C. Smallest Algae Thrive as the Arctic Ocean Freshens. Science 2009, 326, 539. [Google Scholar] [CrossRef] [Green Version]
- Morán, X.A.G.; López-Urrutia, Á.; Calvo-Díaz, A.; Li, W.K.W. Increasing Importance of Small Phytoplankton in a Warmer Ocean. Glob. Chang. Biol. 2010, 16, 1137–1144. [Google Scholar] [CrossRef]
- Li, C.; Meng, Y.; He, C.; Chan, V.B.S.; Yao, H.; Thiyagarajan, V. Mechanical Robustness of the Calcareous Tubeworm Hydroides elegans: Warming Mitigates the Adverse Effects of Ocean Acidification. Biofouling 2016, 32, 191–204. [Google Scholar] [CrossRef]
- Whalan, S.; Webster, N.S. Sponge Larval Settlement Cues: The Role of Microbial Biofilms in a Warming Ocean. Sci. Rep. 2014, 4, 4072. [Google Scholar] [CrossRef] [Green Version]
- Short, J.; Foster, T.; Falter, J.; Kendrick, G.A.; McCulloch, M.T. Crustose Coralline Algal Growth, Calcification and Mortality Following a Marine Heatwave in Western Australia. Cont. Shelf Res. 2015, 106, 38–44. [Google Scholar] [CrossRef]
- McPherson, M.L.; Finger, D.J.I.; Houskeeper, H.F.; Bell, T.W.; Carr, M.H.; Rogers-Bennett, L.; Kudela, R.M. Large-Scale Shift in the Structure of a Kelp Forest Ecosystem Co-Occurs with an Epizootic and Marine Heatwave. Commun. Biol. 2021, 4, 298. [Google Scholar] [CrossRef]
- Li, X.; Roevros, N.; Dehairs, F.; Chou, L. Biological Responses of the Marine Diatom Chaetoceros socialis to Changing Environmental Conditions: A Laboratory Experiment. PLoS ONE 2017, 12, e0188615. [Google Scholar] [CrossRef] [Green Version]
- Kelaher, B.P.; Mamo, L.T.; Provost, E.; Litchfield, S.G.; Giles, A.; Butcherine, P. Influence of Ocean Warming and Acidification on Habitat-Forming Coralline Algae and Their Associated Molluscan Assemblages. Glob. Ecol. Conserv. 2022, 35, e02081. [Google Scholar] [CrossRef]
- Lawrence, C.M.; Bolton, J.J. Experimental Effects of Warming and Epiphyte Grazing on the Ecophysiology of Two Seagrass Morphotypes. J. Exp. Mar. Biol. Ecol. 2023, 558, 151834. [Google Scholar] [CrossRef]
- Smale, D.; Wernberg, T. Short-Term in Situ Warming Influences Early Development of Sessile Assemblages. Mar. Ecol. Prog. Ser. 2012, 453, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Savva, I.; Bennett, S.; Roca, G.; Jordà, G.; Marbà, N. Thermal Tolerance of Mediterranean Marine Macrophytes: Vulnerability to Global Warming. Ecol. Evol. 2018, 8, 12032–12043. [Google Scholar] [CrossRef] [Green Version]
- Ontoria, Y.; Cuesta-Gracia, A.; Ruiz, J.M.; Romero, J.; Pérez, M. The Negative Effects of Short-Term Extreme Thermal Events on the Seagrass Posidonia oceanica Are Exacerbated by Ammonium Additions. PLoS ONE 2019, 14, e0222798. [Google Scholar] [CrossRef] [Green Version]
- Burrows, M.T.; Schoeman, D.S.; Buckley, L.B.; Moore, P.; Poloczanska, E.S.; Brander, K.M.; Brown, C.; Bruno, J.F.; Duarte, C.M.; Halpern, B.S.; et al. The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science 2011, 334, 652–655. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.; Kennedy, H.; Duarte, C.; Kennedy, P.; Proud, S. Age and Growth of the Fan Mussel Pinna nobilis from South-East Spanish Mediterranean Seagrass (Posidonia oceanica) Meadows. Mar. Biol. 1999, 133, 205–212. [Google Scholar] [CrossRef]
- Steinacher, M.; Joos, F.; Frölicher, T.L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S.C.; Gehlen, M.; Lindsay, K.; Moore, J.K.; et al. Projected 21st Century Decrease in Marine Productivity: A Multi-Model Analysis. Biogeosciences 2010, 7, 979–1005. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, M.; Worm, B.; Rahmstorf, S.; Schellnhuber, H.J. Declining Ocean Chlorophyll under Unabated Anthropogenic CO2 Emissions. Environ. Res. Lett. 2011, 6, 034035. [Google Scholar] [CrossRef]
- Sommer, U.; Aberle, N.; Lengfellner, K.; Lewandowska, A. The Baltic Sea Spring Phytoplankton Bloom in a Changing Climate: An Experimental Approach. Mar. Biol. 2012, 159, 2479–2490. [Google Scholar] [CrossRef]
- Sommer, U.; Sommer, F. Cladocerans versus Copepods: The Cause of Contrasting Top–down Controls on Freshwater and Marine Phytoplankton. Oecologia 2006, 147, 183–194. [Google Scholar] [CrossRef]
- Stibor, H.; Vadstein, O.; Diehl, S.; Gelzleichter, A.; Hansen, T.; Hantzsche, F.; Katechakis, A.; Lippert, B.; Løseth, K.; Peters, C.; et al. Copepods Act as a Switch between Alternative Trophic Cascades in Marine Pelagic Food Webs. Ecol. Lett. 2004, 7, 321–328. [Google Scholar] [CrossRef]
- Swain, G.; Anil, A.C.; Baier, R.E.; Chia, F.; Conte, E.; Cook, A.; Hadfield, M.; Haslbeck, E.; Holm, E.; Kavanagh, C.; et al. Biofouling and Barnacle Adhesion Data for Fouling-release Coatings Subjected to Static Immersion at Seven Marine Sites. Biofouling 2000, 16, 331–344. [Google Scholar] [CrossRef]
- Khosravi, M.; Nasrolahi, A.; Shokri, M.R.; Dobretsov, S.; Pansch, C. Impact of Warming on Biofouling Communities in the Northern Persian Gulf. J. Therm. Biol. 2019, 85, 102403. [Google Scholar] [CrossRef]
Colonizer Organism | Effect on Colonization | Environment/Substrate | Reference |
---|---|---|---|
Macroalgae cover (Gracilaria gracilis) | Increase | Seaweed beds and unvegetated sandflats | [181] |
Seagrass cover | Reduction | ||
Macrofaunal abundance | Reduction | ||
P. oceanica abundance | Reduction, becoming steep when the temperature reaches 28 °C | P. oceanica meadows of Cabrera Island (Algerian subbasin of the Western Mediterranean) | [182] |
Phytoplankton | Indirect reduction by increased grazing | Coastal regions | [183] |
Phytoplankton | Reduction and shift towards assemblage dominated by smaller species | Nutrient-limited water (oligotrophic oceans) | [184,185] |
Hydroides elegans | Production of stronger tubes more resistant to simulated predator attacks | Laboratory experiment—mesocosm | [186] |
Bacterial biofilm | Most diversified bacterial communities at high temperature conditions | Laboratory experiment—mesocosm | [187] |
Bacterial biofilm | Higher biomass production and higher diversity in the biofilm at higher temperature | Laboratory experiment—mesocosm | [26] |
Crustose coralline algae | Lack of seasonality growth and high mortality | Marmion Lagoon, South-Western coast of Western Australia | [188] |
Kelp forests (Nereocystis luetkeana) | Clear decrease without full recovery | Coastline in northern California | [189] |
Diatom Chaetoceros socialis | Reduction of production and cell size; poleward shift in biogeographic distribution | Laboratory experiment—mesocosm | [190] |
Coralline algae | Clear reduction in cover and negative effect on photosynthetic efficiency | Laboratory experiment—mesocosm | [191] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somma, E.; Terlizzi, A.; Costantini, M.; Madeira, M.; Zupo, V. Global Changes Alter the Successions of Early Colonizers of Benthic Surfaces. J. Mar. Sci. Eng. 2023, 11, 1232. https://doi.org/10.3390/jmse11061232
Somma E, Terlizzi A, Costantini M, Madeira M, Zupo V. Global Changes Alter the Successions of Early Colonizers of Benthic Surfaces. Journal of Marine Science and Engineering. 2023; 11(6):1232. https://doi.org/10.3390/jmse11061232
Chicago/Turabian StyleSomma, Emanuele, Antonio Terlizzi, Maria Costantini, Madalena Madeira, and Valerio Zupo. 2023. "Global Changes Alter the Successions of Early Colonizers of Benthic Surfaces" Journal of Marine Science and Engineering 11, no. 6: 1232. https://doi.org/10.3390/jmse11061232
APA StyleSomma, E., Terlizzi, A., Costantini, M., Madeira, M., & Zupo, V. (2023). Global Changes Alter the Successions of Early Colonizers of Benthic Surfaces. Journal of Marine Science and Engineering, 11(6), 1232. https://doi.org/10.3390/jmse11061232