Enhancing Container Vessel Arrival Time Prediction through Past Voyage Route Modeling: A Case Study of Busan New Port
Abstract
:1. Introduction
1.1. Research Background
1.2. Literature Review
1.2.1. Route Modeling for Path Prediction
1.2.2. Ship Trajectory Mining
1.2.3. Virtual Arrival and Just-in-Time Arrival
1.2.4. ETA Prediction with Various Approaches
1.2.5. Summary
1.3. Contributions
- Terminal-focused ETA predictions: This study focuses specifically on estimating vessel arrival times at a container terminal at Busan New Port, South Korea by collecting and analyzing AIS data of vessels entering the terminal, as shown in Figure 1. The authors relied on the Terminal Operating System (TOS) of the terminal to gather information about the vessels’ scheduled arrivals. Although these studies were mainly focused on solving berth allocation problems [21,22] and analyzing the trajectories of tanker and bulk carriers [16], it is limited to the assumption that vessels in the experiment are punctual to the berthing schedule. Yu et al. attempted to combine the Berth Allocation and Crane Allocation Problem with prediction models of vessel arrival time using the Random Forest technique [20]. However, the input parameters used in their study were relatively insufficient. Furthermore, their algorithm only took into account the ship’s estimated time of arrival (ETA) 24 h before arrival, disregarding the high volatility of ship ETAs, thus demonstrating its limitations. The findings of this study have practical implications for berth allocation and terminal operation tasks at the specific terminal under examination.
- Novel detection method for determining vessel departure and arrival: This research introduces a novel method for determining when vessels depart from their previous port of call and arrive at their destination port, Busan. By confining the prediction boundary to the short leg between these two ports, the complexity of the prediction process is reduced. The authors created location polygons in the vicinity of the previous ports to monitor vessel departures and arrivals using AIS data, allowing them to closely track these movements.
- Consideration of implicit navigational features: This research incorporates implicit navigational features by examining representative paths of individual ships and recognizing their influence on vessel trajectories. Talavera et al. also used historical AIS data to construct representative paths, but their work focused more on traffic prediction on a waterway, not the arrival time of container vessels [9]. These representative paths were constructed from historical AIS trajectories using spline interpolation and a segmentation method, refining the trajectory data. By integrating both implicit navigational characteristics and representative paths into the prediction model, ETA predictions are improved.
2. Materials and Methodology
2.1. Research Object
2.2. Schematic Diagram
2.3. Data Preparation
2.3.1. Data Description
AIS(S-AIS)
Ship Arrival and Departure Declaration System from Port-MIS System
TOS Berth Plan
2.3.2. Data Gathering Description
2.4. Past Voyage Route Modeling
2.4.1. Previous Port of Call Categorization
2.4.2. Location Polygon for Voyage Splitting
Algorithm 1: Voyage splitting using location polygons |
Finding the Starting Point of the Voyage
- The voyage data must fall within or nearby the location polygon, indicating that the ship was either on the verge of leaving or had already left the polygon.
- The heading of the ship must meet the specified criteria.
- The average starting sailing speed must be equal to or greater than 11 knots.
Finding the Last Point of the Voyage
2.5. Generating Representative Paths
2.5.1. Spline Interpolation for Integrating Voyages
2.5.2. Segmenting Representative Path
2.6. Prediction of ETA
Algorithm 2: ETA prediction using interpolation and segmentation |
2.7. Searching for Optimal Parameters
Error Metrics
Algorithm 3: Searching optimal parameters |
2.8. Model Performance Evaluation
2.8.1. Evaluation Data
2.8.2. Evaluation Method
3. Results
3.1. Results of Modeling and Evaluation
3.2. Optimal Parameter Result
3.3. ETA Prediction Plots
3.3.1. Modeling
3.3.2. Performance Evaluation
4. Discussion
4.1. Analysis of the Results
4.2. Relationship between Interpolation and Segment and ETA Estimation Accuracy
5. Conclusions
5.1. Summary
5.2. Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
(S)AIS | (Satellite) Automatic Identification System |
TOS | Terminal Operating System |
Port-MIS | Port Management Information System |
MAE | Mean Absolute Error |
ETA | Estimated Time of Arrival |
ETD | Estimated Time of Departure |
RTA | Required Time of Arrival |
PBP | Pilot Boarding Place |
ATA | Actual Time of Arrival |
ATD | Actual Time of Departure |
TOS_ETA | Estimated Time of Arrival in Terminal Operating System |
AIS_ETA | Estimated Time of Arrival in Automatic Identification System |
RP | Representative Path |
API | Application Programming Interface |
CSV | Comma-Separated Values |
Appendix A. ETA Prediction Results
Timestamp | Vessel Name | Previous Port | ATA | Predicted ETA | AIS_ETA | TOS_ETA | Predicted_ETA Error | AIS_ETA Error | TOS_ETA Error | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2022-10-13 06:46:45 | V015 | Tianjin | 2022-10-15 02:14:34 | 2022-10-15 01:54:51 | 2022-10-14 06:00:00 | 2022-10-15 03:00:00 | 0 days 00:19:43 | 0 days 20:14:34 | 0 days 00:45:25 |
2 | 2022-10-13 07:16:51 | 2022-10-15 02:24:57 | 2022-10-14 06:00:00 | 2022-10-15 03:00:00 | 0 days 00:10:22. | 0 days 20:14:34 | 0 days 00:45:25 | |||
3 | 2022-10-13 07:47:25 | 2022-10-15 02:55:31 | 2022-10-14 06:00:00 | 2022-10-15 03:00:00 | 0 days 00:40:56 | 0 days 20:14:34 | 0 days 00:45:25 | |||
… | … | … | … | … | … | … | ||||
69 | 2022-10-15 01:14:27 | 2022-10-15 01:36:48 | 2022-10-14 06:00:00 | 2022-10-14 23:00:00 | 0 days 00:37:46 | 0 days 20:14:34 | 0 days 03:14:34 | |||
70 | 2022-10-15 01:44:30 | 2022-10-15 02:06:51 | 2022-10-14 05:45:00 | 2022-10-14 23:00:00 | 0 days 00:07:43 | 0 days 20:29:34 | 0 days 03:14:34 | |||
71 | 2022-10-15 02:14:34 | 2022-10-15 02:36:55 | 2022-10-14 05:45:00 | 2022-10-14 23:00:00 | 0 days 00:22:20 | 0 days 20:29:34 | 0 days 03:14:34 |
Timestamp | Vessel Name | Previous Port | ATA | Predicted ETA | AIS_ETA | TOS_ETA | Predicted_ETA Error | AIS_ETA Error | TOS_ETA Error | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2023-01-20 11:49:29 | V010 | Yokohama | 2023-01-24 18:17:12 | 2023-01-24 10:43:58 | 2023-01-22 01:00:00 | 2023-01-25 01:00:00 | 0 days 07:33:14 | 2 days 17:17:12 | 0 days 06:42:47 |
2 | 2023-01-20 11:54:30 | 2023-01-24 10:48:58 | 2023-01-22 01:00:00 | 2023-01-25 01:00:00 | 0 days 07:28:13 | 2 days 17:17:12 | 0 days 06:42:47 | |||
3 | 2023-01-20 11:59:31 | 2023-01-24 10:53:59 | 2023-01-22 01:00:00 | 2023-01-25 01:00:00 | 0 days 07:23:13 | 2 days 17:17:12 | 0 days 06:42:47 | |||
… | … | … | … | … | … | … | ||||
313 | 2023-01-24 17:27:04 | 2023-01-24 17:27:04 | 2023-01-24 09:50:00 | 2023-01-24 19:00:00 | 0 days 00:50:08 | 0 days 08:27:12 | 0 days 00:42:47 | |||
314 | 2023-01-24 17:32:04 | 2023-01-24 17:32:04 | 2023-01-24 09:50:00 | 2023-01-24 19:00:00 | 0 days 00:45:07 | 0 days 08:27:12 | 0 days 00:42:47 | |||
315 | 2023-01-24 17:42:06 | 2023-01-24 17:42:06 | 2023-01-24 09:50:00 | 2023-01-24 19:00:00 | 0 days 00:35:06 | 0 days 08:27:12 | 0 days 00:42:47 |
Appendix B. Sensitivity Analysis for Detailed Voyages
References
- UNCTAD. Review of Maritime Transport 2021; UN: New York, NY, USA, 2021. [Google Scholar]
- Statista. International Seaborne Trade Carried by Container Ships from 1980 to 2020; Statista Inc.: Hamburg, Germany, 2021. [Google Scholar]
- Moorthy, R.; Teo, C.-P. Berth management in container terminal: The template design problem. OR Spectr. 2006, 28, 495–518. [Google Scholar] [CrossRef]
- Jahn, C.; Scheidweiler, T. Port Call Optimization by Estimating Ships’ Time of Arrival. In Dynamics in Logistics; Springer International Publishing: Cham, Switzerland, 2018; pp. 172–177. [Google Scholar]
- Park, H.J.; Cho, S.W.; Lee, C. Particle swarm optimization algorithm with time buffer insertion for robust berth scheduling. Comput. Ind. Eng. 2021, 160, 107585. [Google Scholar] [CrossRef]
- Carson-Jackson, J. Satellite AIS—Developing Technology or Existing Capability? J. Navig. 2012, 65, 303–321. [Google Scholar] [CrossRef] [Green Version]
- International Maritime Organization. Revised Guidelines for the Onboard Operational Use of Shipborne Automatic Identification Systems (AIS); IMO: London, UK, 2015. [Google Scholar]
- Dobrkovic, A.; Iacob, M.-E.; van Hillegersberg, J.; Mes, M.R.K.; Glandrup, M. Towards an Approach for Long Term AIS-Based Prediction of Vessel Arrival Times. In Logistics and Supply Chain Innovation: Bridging the Gap between Theory and Practice; Zijm, H., Klumpp, M., Clausen, U., Hompel, M.T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 281–294. [Google Scholar] [CrossRef]
- Talavera, A.; Aguasca, R.; Galván, B.; Cacereño, A. Application of Dempster–Shafer theory for the quantification and propagation of the uncertainty caused by the use of AIS data. Reliab. Eng. Syst. Saf. 2013, 111, 95–105. [Google Scholar] [CrossRef]
- Wu, G.; Atilla, I.; Tahsin, T.; Terziev, M.; Wang, L. Long-voyage route planning method based on multi-scale visibility graph for autonomous ships. Ocean Eng. 2021, 219, 108242. [Google Scholar] [CrossRef]
- Li, L.; Wu, D.; Huang, Y.; Yuan, Z.-M. A path planning strategy unified with a COLREGS collision avoidance function based on deep reinforcement learning and artificial potential field. Appl. Ocean Res. 2021, 113, 102759. [Google Scholar] [CrossRef]
- Yang, D.; Wu, L.; Wang, S.; Jia, H.; Li, K.X. How big data enriches maritime research—A critical review of Automatic Identification System (AIS) data applications. Transp. Rev. 2019, 39, 755–773. [Google Scholar] [CrossRef]
- Pallotta, G.; Horn, S.; Braca, P.; Bryan, K. Context-enhanced vessel prediction based on Ornstein-Uhlenbeck processes using historical AIS traffic patterns: Real-world experimental results. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–7. [Google Scholar]
- Zhu, F. Mining ship spatial trajectory patterns from AIS database for maritime surveillance. In Proceedings of the 2nd IEEE International Conference on Emergency Management and Management Sciences, Beijing, China, 10 August 2011; pp. 772–775. [Google Scholar]
- Hyeonho, K.H.B. Prediction of vessel arrival time using auto identification system data. Int. J. Innov. Comput. Inf. Control 2021, 17, 725–734. [Google Scholar] [CrossRef]
- Bai, X.; Cheng, L.; Iris, Ç. Data-driven financial and operational risk management: Empirical evidence from the global tramp shipping industry. Transp. Res. Part E Logist. Transp. Rev. 2022, 158, 102617. [Google Scholar] [CrossRef]
- Jia, H.; Adland, R.; Prakash, V.; Smith, T. Energy efficiency with the application of Virtual Arrival policy. Transp. Res. Part D Transp. Environ. 2017, 54, 50–60. [Google Scholar] [CrossRef]
- GEF-UNDP-IMO GloMEEP Project and Members of the GIA Just in Time Arrival Guide—Barriers and Potential Solutions. Available online: https://wwwcdn.imo.org/localresources/en/OurWork/PartnershipsProjects/Documents/GIA-just-in-time-hires.pdf (accessed on 30 May 2023).
- DCSA. Just-in-Time Port Call. Available online: https://dcsa.org/standards/jit-port-call/ (accessed on 30 May 2023).
- Yu, J.; Voß, S. Towards Just-In-Time Arrival for Container Ships by the Integration of Prediction Models. In Proceedings of the 56th Hawaii International Conference on System Sciences, Maui, HI, USA, 3–6 January 2023. [Google Scholar]
- Du, Y.; Chen, Q.; Lam, J.S.L.; Xu, Y.; Cao, J.X. Modeling the Impacts of Tides and the Virtual Arrival Policy in Berth Allocation. Transp. Sci. 2015, 49, 939–956. [Google Scholar] [CrossRef]
- Iris, Ç.; Pacino, D.; Ropke, S.; Larsen, A. Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results. Transp. Res. Part E Logist. Transp. Rev. 2015, 81, 75–97. [Google Scholar] [CrossRef] [Green Version]
- El Mekkaoui, S.; Benabbou, L.; Berrado, A. Deep learning models for vessel’s ETA prediction: Bulk ports perspective. Flex. Serv. Manuf. J. 2023, 35, 5–28. [Google Scholar] [CrossRef]
- Fancello, G.; Pani, C.; Pisano, M.; Serra, P.; Zuddas, P.; Fadda, P. Prediction of arrival times and human resources allocation for container terminal. Marit. Econ. Logist. 2011, 13, 142–173. [Google Scholar] [CrossRef]
- Pani, C.; Fadda, P.; Fancello, G.; Frigau, L.; Mola, F. A Data mining approach to forecast late arrivals in a transhipment container terminal. Transport 2014, 29, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Pani, C.; Vanelslander, T.; Fancello, G.; Cannas, M. Prediction of late/early arrivals in container terminals—A qualitative approach. Eur. J. Transp. Infrastruct. Res. 2015, 15, 536–550. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Park, Y. Early detection of vessel delays using combined historical and real-time information. J. Oper. Res. Soc. 2017, 68, 182–191. [Google Scholar] [CrossRef]
- Wu, X.; Roy, U.; Hamidi, M.; Craig, B.N. Estimate travel time of ships in narrow channel based on AIS data. Ocean Eng. 2020, 202, 106790. [Google Scholar] [CrossRef]
- Harati-Mokhtari, A.; Wall, A.; Brooks, P.; Wang, J. Automatic Identification System (AIS): Data Reliability and Human Error Implications. J. Navig. 2007, 60, 373–389. [Google Scholar] [CrossRef]
- Min, H.; Ahn, S.-B.; Lee, H.-S.; Park, H. An integrated terminal operating system for enhancing the efficiency of seaport terminal operators. Marit. Econ. Logist. 2017, 19, 428–450. [Google Scholar] [CrossRef]
- Venturini, G.; Iris, Ç.; Kontovas, C.A.; Larsen, A. The multi-port berth allocation problem with speed optimization and emission considerations. Transp. Res. Part D Transp. Environ. 2017, 54, 142–159. [Google Scholar] [CrossRef] [Green Version]
- Hintzen, N.T.; Piet, G.J.; Brunel, T. Improved estimation of trawling tracks using cubic Hermite spline interpolation of position registration data. Fish. Res. 2010, 101, 108–115. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
Static | Dynamic | Voyage-Related | Safety-Related |
---|---|---|---|
MMSI 1 | Vessel position | Draught | Short safety-related messages |
Call-Sign | Position Timestamp | Destination | |
Name | COG 2 | ETA | |
IMO No. | SOG 3 | ||
Length and beam | Heading | ||
Vessel type | Navigational status 4 |
Field | Value |
---|---|
MMSI | (concealed) |
imo | (concealed) |
callsign | (concealed) |
vessel_name | (concealed) |
type_info | (code: 70, description: ‘Cargo, all ships of this type’) |
dimension_info | (a:18, b:181, c:12, d:20) |
voyage_info | (eta: ‘09211045′, max_draught: 10.0, destination: ‘SADMM’, navigation_info: (code: 0, description: ‘under way using engine’}, received: ‘2022-09-13T04:30:38Z’) |
Position_info | (‘lat’: 17.2595, ‘lon’: 72.4836, ‘turn’: 44.0, ‘speed’: 12.2, ‘course’: 196.1, ‘true_heading’: 140, ‘received’: 2022-09-13T04:35:58Z’), |
API call Timestamp | 2022-09-13 04:41:10 GMT+9 |
Port Name | Callsign | Vessel Name | Call Year | Ser No. | Gross Tonnage | Port in Time | Port out Time | CIQ Time | Berth Place | Previous Port | Next Port | Vessel Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Busan | (concealed) | V010 | 2022 | 12 | 40,447 | 2023-03-30 03:22 | 2023-04-01 01:00 | 2023-03-30 03:22 | Gam-man pier Berth 3 | TIANJIN XINGANG PT | TIANJIN XINGANG PT | Full Container |
For Modeling | For Evaluation | |
---|---|---|
Collecting period | 20 September 2022~13 January 2023 (app’ 4 months) | 14 January 2023~14 March 2023 (2 months) |
API call interval | Every 5 min | |
Data format | Comma-separated values (csv) | |
Voyages | 157 | 36 |
Vessels | 81 | 27 |
Vessel Code | MMSI | IMO | Type | Gross Tonnage | LOA (m) | Breath (m) | Year Built | Capacity | |
---|---|---|---|---|---|---|---|---|---|
1 | V001 | (concealed) | (concealed) | Full Container | 54,214 | 294.06 | 32.2 | 2004 | 5060 |
2 | V002 | (concealed) | (concealed) | 93,685 | 299.9 | 48.2 | 2014 | 9300 | |
3 | V003 | (concealed) | (concealed) | 113,042 | 337 | 48.3 | 2015 | 10,000 | |
… | … | … | … | … | … | … | … | … | |
79 | V079 | (concealed) | (concealed) | 93,685 | 299.9 | 48.2 | 2015 | 9300 | |
80 | V080 | (concealed) | (concealed) | 153,115 | 365.79 | 51.3 | 2011 | 14,000 | |
81 | V081 | (concealed) | (concealed) | 113,042 | 337 | 48.31 | 2015 | 10,000 |
Region | Previous Ports (Voyages Counted by Port) | Total Voyages Counted |
---|---|---|
Northern coast, China | QINGDAO (34), TIANJIN (37) | 71 |
Eastern coast, China | NINGBO (31), ZHOUSHAN (10) | 41 |
South China Sea | SINGAPORE (14), TANJUNG, Malaysia (4) | 18 |
Southern Japan (Kyushu) | HAKATA (19) | 19 |
Eastern Japan (Honshu) | YOKOHAMA (13) | 13 |
Port | Min Heading | Max Heading |
---|---|---|
Yokohama | 149.9° | 232.7° |
Hakata | 285.3° | 311.2° |
Ningbo | 43° | 129.25° |
Zhoushan | 72.7° | 121° |
Singapore | 39.4° | 183.3° |
Tanjung Pelepas | 171.8° | 183.4° |
Qingdao | 84.7° | 123.2° |
Tianjin | 93.2° | 121.2° |
Longitude | Latitude | SOG | |
---|---|---|---|
1 | 117.9633 | 38.92593 | 11 |
2 | 117.9683 | 38.92525 | 11.00596 |
3 | 117.9731 | 38.92458 | 11.01029 |
… | … | … | … |
10,998 | 128.8637 | 34.91406 | 7.276178 |
10,999 | 128.8638 | 34.91496 | 7.302102 |
11,000 | 128.8638 | 34.91583 | 7.333333 |
Period | Predicted ETA MAE | AIS ETA MAE | TOS ETA MAE | |
---|---|---|---|---|
Modeling | 4 months | 0 days 03:14:48 | 0 days 16:37:11 | 0 days 05:15:57 |
Evaluation | 2 months | 0 days 07:26:47 | 0 days 20:35:03 | 0 days 21:44:20 |
Previous Port | Vessel Code | Voyage Number | Optimal Interpolation | Optimal Segment | MAE | |
---|---|---|---|---|---|---|
1 | Yokohama | V004 | V004_2022_5 | 11,000 | 100 | 0 days 00:39:12. |
2 | Tianjin | V018 | V018_2022_7 | 9000 | 90 | 0 days 01:43:19 |
3 | Tianjin | V019 | V019_2022_6 | 2000 | 100 | 0 days 00:48:53 |
… | … | … | … | … | … | … |
110 | Qingdao | V010 | V010_2022_6 | 11,000 | 110 | 0 days 02:51:28 |
114 | Singapore | V060 | V060_2022_6 | 11,000 | 90 | 0 days 03:25:00 |
115 | Zhoushan | V052 | V052_2022_1 | 11,000 | 110 | 0 days 02:49:29 |
Vessel Name | Modeling Voyage Number | Evaluation Result | |||
---|---|---|---|---|---|
1 | V063 | 11 | 0 days 03:11:59 | 0 days 09:59:13 | 0 days 10:51:18 |
2 | V051 | 1 | 0 days 10:40:37 | 0 days 23:24:39 | 0 days 10:11:52 |
3 | V026 | 2 | 0 days 08:57:23 | 1 days 09:52:00 | 0 days 12:19:02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.-H.; Kim, D.-H.; Yun, S.-W.; Kim, H.-J.; Kim, S. Enhancing Container Vessel Arrival Time Prediction through Past Voyage Route Modeling: A Case Study of Busan New Port. J. Mar. Sci. Eng. 2023, 11, 1234. https://doi.org/10.3390/jmse11061234
Yoon J-H, Kim D-H, Yun S-W, Kim H-J, Kim S. Enhancing Container Vessel Arrival Time Prediction through Past Voyage Route Modeling: A Case Study of Busan New Port. Journal of Marine Science and Engineering. 2023; 11(6):1234. https://doi.org/10.3390/jmse11061234
Chicago/Turabian StyleYoon, Jeong-Hyun, Dong-Ham Kim, Sang-Woong Yun, Hye-Jin Kim, and Sewon Kim. 2023. "Enhancing Container Vessel Arrival Time Prediction through Past Voyage Route Modeling: A Case Study of Busan New Port" Journal of Marine Science and Engineering 11, no. 6: 1234. https://doi.org/10.3390/jmse11061234
APA StyleYoon, J.-H., Kim, D.-H., Yun, S.-W., Kim, H.-J., & Kim, S. (2023). Enhancing Container Vessel Arrival Time Prediction through Past Voyage Route Modeling: A Case Study of Busan New Port. Journal of Marine Science and Engineering, 11(6), 1234. https://doi.org/10.3390/jmse11061234