Strength of Ship Structures
Acknowledgments
Conflicts of Interest
References
- Ryumin, S.; Tryaskin, V.; Plotnikov, K. Algorithms for the Recognition of the Hull Structures’ Elementary Plate Panels and the Determination of Their Parameters in a Ship CAD System. J. Mar. Sci. Eng. 2023, 11, 189. [Google Scholar] [CrossRef]
- Silva-Campillo, A.; Pérez-Arribas, F. Effect of the Torsion Box Dimensions on Local Stress Distribution and Fatigue Strength Assessment of a Container Ship. J. Mar. Sci. Eng. 2022, 10, 1172. [Google Scholar] [CrossRef]
- Anwar, M.U.; Lashin, M.M.A.; Khan, N.B.; Munir, A.; Jameel, M.; Muhammad, R.; Guedri, K.; Galal, A.M. Effect of Variation in the Mass Ratio on Vortex-Induced Vibration of a Circular Cylinder in Crossflow Direction at Reynold Number = 104: A Numerical Study Using RANS Model. J. Mar. Sci. Eng. 2022, 10, 1126. [Google Scholar] [CrossRef]
- Cheemakurthy, H.; Barsoum, Z.; Burman, M.; Garme, K. Comparison of Lightweight Structures in Bearing Impact Loads during Ice–Hull Interaction. J. Mar. Sci. Eng. 2022, 10, 794. [Google Scholar] [CrossRef]
- Feng, Z.; Li, J.; Ma, J.; Su, Y.; Zheng, X.; Mao, Y.; Zhao, Z. EBSD Characterization of 7075 Aluminum Alloy and Its Corrosion Behaviors in SRB Marine Environment. J. Mar. Sci. Eng. 2022, 10, 740. [Google Scholar] [CrossRef]
- Marić, D.; Cumin, J.; Šolić, T.; Samardžić, I. Quality Analysis of AISI 321 Welds of Bellow Compensators Used in Shipbuilding. J. Mar. Sci. Eng. 2022, 10, 452. [Google Scholar] [CrossRef]
- Cheemakurthy, H.; Barsoum, Z.; Burman, M.; Garme, K. Lightweight Structural Concepts in Bearing Quasi-Static Ice Hull Interaction Loads. J. Mar. Sci. Eng. 2022, 10, 416. [Google Scholar] [CrossRef]
- Woloszyk, K.; Garbatov, Y. Advances in Modelling and Analysis of Strength of Corroded Ship Structures. J. Mar. Sci. Eng. 2022, 10, 807. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Z.; Zhou, J. Numerical Investigation on the Residual Ultimate Strength of Central-Cracked Stiffened Plates under Tensile and Bending Loads Using XFEM. J. Mar. Sci. Eng. 2023, 11, 302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oterkus, E. Strength of Ship Structures. J. Mar. Sci. Eng. 2023, 11, 1452. https://doi.org/10.3390/jmse11071452
Oterkus E. Strength of Ship Structures. Journal of Marine Science and Engineering. 2023; 11(7):1452. https://doi.org/10.3390/jmse11071452
Chicago/Turabian StyleOterkus, Erkan. 2023. "Strength of Ship Structures" Journal of Marine Science and Engineering 11, no. 7: 1452. https://doi.org/10.3390/jmse11071452
APA StyleOterkus, E. (2023). Strength of Ship Structures. Journal of Marine Science and Engineering, 11(7), 1452. https://doi.org/10.3390/jmse11071452