Sedimentary Characteristics and Model of Lacustrine Deep Water Gravity Flow in the Third Member of Paleogene Shahejie Formation in Niuzhuang Sag, Bohai Bay Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Sedimentary Characteristics
4.1. Lithologic Characteristics
4.2. Grain Size Characteristics
4.3. Delta Sedimentary Characteristics
4.4. Sedimentary Characteristics of Gravity Flow
4.4.1. Sliding Sedimentary Structure
4.4.2. Collapse Sedimentary Structure
4.4.3. Clastic Flow Sedimentary Structure
4.4.4. Turbidity Flow Sedimentary Structure
4.5. Logging Facies Characteristics
4.6. Seismic Facies Characteristics
5. Discussion
5.1. Profile Distribution Characteristics of Sedimentary Microfacies
5.2. Plane Distribution Characteristics of Sedimentary Microfacies
5.3. Sedimentary Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shanmegam, G. New perspectives on deep-water sandstones: Implications. Pet. Explor. Dev. 2013, 40, 294–301. [Google Scholar] [CrossRef]
- Talling, P.J.; Allin, J.; Armitage, D.A.; Arnott, R.W.C.; Cartigny, M.J.B.; Clare, M.A.; Felletti, F.; Covault, J.A.; Girardclos, S.; Hansen, E.; et al. Key future directions for research on turbidity currents and their deposits. J. Sediment. Res. 2015, 85, 153–169. [Google Scholar] [CrossRef]
- Pohl, F.; Eggenhuisen, J.T.; Tilston, M.; Cartigny, M.J.B. New flow relaxation mechanism explains scour fields at the end of submarine channels. Nat. Commun. 2019, 10, 4425. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.Q.; Zhang, S.; Xie, X.N.; An, G.Z.; Zhao, B.; Hou, Y.P. Discovery of a Large-Scale Lacustrine Subaqueous Channel in the Nenjiang Formation of the Songliao Basin and Its Implication on Petroleum Geology. Acta Geol. Sin. 2006, 80, 1226–1232+1240. [Google Scholar]
- Zou, C.N.; Zhao, Z.Z.; Yang, H.; Fu, J.H.; Zhu, R.K.; Yuan, X.J.; Wang, L. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin. Acta Sedimentol. Sin. 2009, 27, 1065–1075. [Google Scholar]
- Xian, B.Z.; Wang, J.H.; Liu, J.P.; Yin, Y.; Chao, C.Z. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China. Sediment. Geol. 2018, 368, 68–82. [Google Scholar] [CrossRef]
- Cao, Y.C.; Jin, J.H.; Liu, H.N.; Yang, T.; Liu, K.Y.; Wang, Y.Z.; Wang, J.; Liang, C. Deep-water gravity flow deposits in a lacustrine rift basin and their oil and gas geological significance in eastern China. Pet. Explor. Dev. 2021, 48, 247–257. [Google Scholar] [CrossRef]
- Guo, J.X.; Jiang, Z.X.; Xie, X.Y.; Liang, C.; Wang, W.W.; Busbey, A.B.; Jia, C.C.; Meng, J.Y. Deep-lacustrine sediment gravity flow channel-lobe complexes on a stepped slope: An example from the Chengbei Low Uplift, Bohai Bay Basin, East China. Mar. Pet. Geol. 2021, 124, 104839. [Google Scholar]
- Li, W.H.; Zhou, L.F.; Fu, J.H.; Zhao, W.Z.; Xue, L.Q.; Jin, J.Q. Turbidity current deposits and their significance for petroleum geology of Upper Triassic in the Kuqa Depression. Acta Sedimentol. Sin. 1997, 15, 20–24. [Google Scholar]
- Talling, P.J.; Masson, D.G.; Sumner, E.J.; Malgesini, G. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentol. J. Int. Assoc. Sedimentol. 2012, 59, 1937–2003. [Google Scholar]
- Marchand, A.; Apps, G.; Li, W.; Rotzien, J.R. Depositional processes and impact on reservoir quality in deepwater paleogene reservoirs, us gulf of mexicoreservoir quality in deep water gulf of mexico paleogene trend. AAPG Bull. 2015, 99, 1635–1648. [Google Scholar] [CrossRef]
- Zou, C.N.; Wang, L.; Li, Y.; Tao, S.Z.; Hou, L.H. Deep-lacustrine transformation of sandy debrites into turbidites, upper Triassic, central China. Sediment. Geol. 2012, 265–266, 143–155. [Google Scholar] [CrossRef]
- Yang, T.; Cao, Y.C.; Wang, Y.Z.; Zhang, S.M. Types, sedimentary characteristics and genetic mechanisms of deep-water gravity flows: A case study of the middle submember in Member 3 of Shahejie Formation in Jiyang Depression. Acta Pet. Sin. 2015, 36, 1048–1059. [Google Scholar]
- Xian, B.Z.; Wang, L.; Liu, J.P.; Lu, Z.Y.; Li, Y.Z.; Niu, S.W.; Zhu, Y.F.; Hong, F.H. Sedimentary characteristics and model of delta-fed turbidites in Eocene eastern Dongying Depression. J. China Univ. Pet. (Ed. Nat. Sci.) 2016, 40, 10–21. [Google Scholar]
- Yao, Z.; Zhu, J.T.; Zuo, Q.M.; Man, X.; Mao, X.L.; Wang, Z.Z.; Dang, Y.Y. Gravity flow sedimentary system and petroleum exploration prospect of deep water area in the Qiongdongnan Basin. South China Sea. Nat. Gas Ind. 2015, 35, 21–30. [Google Scholar]
- Li, S.L.; Yu, X.H.; Jin, J.L. Sedimentary Microfacies and Porosity Modeling of Deep-Water Sandy Debris Flows by Combining Sedimentary Patterns with Seismic Data: An Example from Unit I of Gas Field A, South China Sea. Acta Geol. Sin. (Engl. Ed.) 2016, 90, 182–194. [Google Scholar]
- Yang, T.; Cao, Y.C.; Friis, H.; Liu, K.Y.; Wang, Y.Z.; Zhou, L.L.; Zhang, S.M.; Zhang, H.N. Genesis and distribution pattern of carbonate cements in lacustrine deepwater gravity-flow sandstone reservoirs in the third member of the Shahejie Formation in the Dongying Sag, Jiyang Depression, Eastern China. Mar. Pet. Geol. 2018, 92, 547–564. [Google Scholar] [CrossRef]
- Haughton, P.; Davis, C.; Mccaffrey, W.; Barker, S. Hybrid sediment gravity flow deposits–classification, origin and significance. Mar. Pet. Geol. 2009, 26, 1900–1918. [Google Scholar] [CrossRef]
- Talling, P.J.; Paull, C.K.; Piper, D. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? direct observations from monitoring of active flows. Earth-Sci. Rev. 2013, 125, 244–287. [Google Scholar] [CrossRef]
- Stow, D.; Johansson, M. Deep-water massive sands: Nature, origin and hydrocarbon implications. Mar. Pet. Geol. 2000, 17, 145–174. [Google Scholar] [CrossRef]
- Li, Y.F.; Pu, R.H.; Zhang, G.C.; Du, J.M.; Bao, J.J. New-type pliocene channel depositional systems resulting from turbidity flows obliquely interacting with contour currents: A novel case study from the southern Qiongdongnan basin, northern South China Sea. Mar. Pet. Geol. 2023, 147, 105982. [Google Scholar]
- Shanmugam, G. 50 years of the turbidite paradigm (1950s–1990s): Deep-water processes and facies model—A critical perspective. Mar. Pet. Geol. 2000, 17, 285–342. [Google Scholar]
- Du, C. Deposition pattern of stony and muddy debris flow at the confluence area. J. Mt. Sci. 2021, 18, 622–634. [Google Scholar] [CrossRef]
- Zhou, X.P.; He, Q.; Liu, J.Y.; Li, S.X.; Yang, T. Features and origin of deep-water debris flow deposits in the Triassic Chang 7 Member, Ordos Basin. Oil Gas Geol. 2021, 42, 15. [Google Scholar]
- Liu, X.J.; Liu, H.M.; Song, G.Q.; Jia, G.H.; Yang, H.Y. Sedimentary characteristics and distribution pattern of the slope-shifting fan in the low-lying slope zone of Dongying sag. Pet. Geol. Recovery Effic. 2016, 23, 1–10. [Google Scholar]
- Zhang, H.A.; Wang, C.Z.; Jiang, F.H.; Jin, Y.Q.; Hu, B. Gravity flow deposits associating with ichnoassemblages within the middle Member 3 of Paleogene Shahejie Formation in Dongpu sag, Henan Province. J. Palaeogeogr. (Chin. Ed.) 2020, 22, 1157–1170. [Google Scholar]
- Zhang, J.Q.; Li, S.X.; Li, H.W.; Zhou, X.P.; Liu, J.Y.; Guo, R.L.; Chen, J.L.; Li, S.T. Gravity flow deposits in the distal lacustrine basin of the 7th reservoir group of Yanchang Formation and deepwater oil and gas exploration in Ordos Basin: A case study of Chang 73 sublayer of Chengye horizontal well region. Acta Pet. Sin. 2021, 42, 570–587. [Google Scholar]
- Shi, J.C.; Qu, X.F.; Lei, Q.H.; Qi, Y.; Li, S.H.; Xie, Q.C. Sedimentary characteristics and sand architecture of gravity flows in terrestrial lacustrine basins: A case study of Chang 7 Formation of the Upper Triassic in Ordos basin. Geol. Exploration. 2018, 54, 183–192. [Google Scholar]
- Chen, B.Y.; Lin, C.Y.; Ma, C.F.; Ren, L.H.; Wang, J.; Li, Z.P.; Du, K. Types, characteristics and sedimentary model of deep-water gravity flow deposition in the steep slope zone of terrestrial faulted lacustrine basin: A case study of the Es4s submember in the Shengtuo area of Dongying depression. Acta Geol. Sin. 2019, 93, 2921–2934. [Google Scholar]
- Huang, L.; Liu, C.Y. Evolutionary characteristics of the sags to the east of Tan–Lu Fault Zone, Bohai Bay Basin (China): Implications for hydrocarbon exploration and regional tectonic evolution. J. Asian Earth Sci. 2014, 79, 275–287. [Google Scholar]
- Wang, W.Q.; Liu, N.; Tian, F. Sequence Stratigraphic Analysis of the Member 3 of Shahejie Formation in the Niuzhuang Area of the Dongying Depression. J. Stratigr. 2007, 31, 567–572. [Google Scholar]
- Zhu, X.M.; Dong, Y.L.; Yang, J.S.; Zhang, Q.; Li, D.J.; Xu, C.G.; Yu, S. The sequence framework and depositional system distribution of Paleogene in Liaodong Bay area. Sci. China Ser. D Earth Sci. 2008, 38 (Suppl. S1), 1–10. [Google Scholar] [CrossRef]
- Shanmugam, G. New Perspectives on Deep-Water Sandstones, Volume 9: Handbook of Petroleum Exploration and Production; Elsevier: Amsterdam, The Netherlands, 2012; Volume 9, pp. 1–542. [Google Scholar]
- Pickering, K.T.; Hiscott, R.N.; Hein, F.J. Deep Marine Environments: Clastic Sedimentation and Tectonics; Unwin Hyman: London, UK, 1989; p. 416. [Google Scholar]
- Hampton, M.A. The role of subaqueous debris flow in generating turbidity currents. J. Sediment. Petrol. 1972, 42, 775–793. [Google Scholar]
- Middleton, G.V.; Hampton, M.A. Sediment Gravity Flows: Mechanics of Flow and Deposition; Pacific Section Society of Economic Paleontologists and Mineralogists: Los Angeles, CA, USA, 1973; pp. 1–38. [Google Scholar]
- Lowe, D.R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Petrol. 1982, 52, 279–297. [Google Scholar]
- Kuenen, P.H. Properties of turbidity currents of high density. Spec. Publ. 1951, 2, 14–33. [Google Scholar]
- Serra, O. Fundamentals of Well-Log Interpretation: The Acquisition of Logging Data; Elsevier: New York, NY, USA, 1984; pp. 1–423. [Google Scholar]
- Zeng, H.L.; Backus, M.M.; Barrow, K.T. Stratal slicing, PartI: Realistic 3-D seismic model. Geophysics 1998, 63, 502–513. [Google Scholar] [CrossRef]
- Zeng, H.L.; Henry, S.C.; Riola, J.P. Stratal slicing. Part II: Real 3-D seismic data. Geophysics 1998, 63, 514–522. [Google Scholar] [CrossRef]
Serial Number | Well Number | Top Depth/m | Bottom Depth/m | Horizon | Coring Length/m |
---|---|---|---|---|---|
1 | G7 | 2078.15 | 2132.23 | Es3 | 51.6 |
2 | G105 | 2149 | 2320.4 | 40.4 | |
3 | G112 | 2668.33 | 2693.83 | 25.2 | |
4 | N16 | 2973.37 | 3025.04 | 36.9 | |
5 | N21 | 2971 | 2966.5 | 103 | |
6 | N24 | 3055.34 | 3244.55 | 68.3 | |
7 | N30 | 2860 | 2865.75 | 46.5 | |
8 | N33 | 3028 | 3226 | 185 | |
9 | N43 | 3240 | 3378 | 42.3 | |
10 | N103 | 3056.04 | 3302.61 | 34 | |
11 | N104 | 2065.55 | 3117.3 | 57.7 | |
12 | N107 | 3026.8 | 3405.6 | 54.4 | |
13 | N301 | 2721 | 2792 | 31 | |
14 | W31 | 2445.07 | 2487.79 | 29.9 | |
15 | W35 | 1960 | 2015 | 52.7 | |
16 | W107 | 2600.5 | 2621.9 | 21.2 |
Well Number | Horizon/% | Quartz/% | Potassium Feldspar/% | Plagioclase/% | Mica/% | Matrix/% | Cement/% |
---|---|---|---|---|---|---|---|
N48 | Es3 | 40 | 10 | 27 | 1 | 1 | 4 |
N104 | 40 | 13 | 20 | 0.5 | 10 | 0 | |
G10 | 48 | 14 | 14 | 0.5 | 10 | 0.5 | |
N116 | 47 | 14 | 16 | 0.5 | 15 | 0.5 | |
N117 | 55 | 18 | 14 | 0 | 10 | 0 | |
G12 | 43 | 18 | 18 | 0.5 | 10 | 0 | |
N107 | 42 | 16 | 15 | 2 | 10 | 5 | |
N20 | 55 | 14 | 13 | 0 | 5 | 0 | |
W108 | 36 | 18 | 14 | 0 | 2 | 0.5 | |
N301 | 40 | 17 | 15 | 0.5 | 10 | 3 | |
N33 | 45 | 10 | 10 | 0.5 | 7 | 1 | |
W541 | 43 | 17 | 15 | 0.5 | 13 | 2 |
Well Number | Horizon | Depth/m | Main Particle Size/mm | Sorting | Roundness | Support Mode | Cementation Type | Weathering Degree |
---|---|---|---|---|---|---|---|---|
N104 | Es3 | 3049.35 | 0.13–0.25 | Good | Secondary edge | Particle | Pore | Medium |
G10 | 2777.87 | 0.13–0.25 | Medium | |||||
N301 | 2721 | 0.06–0.13 | Medium | |||||
N301 | 2721 | 0.06–0.13 | Poor-medium | |||||
W541 | 2802 | 0.13–0.25 | Medium | |||||
N107 | 3269.1 | 0.13–0.25 | Medium-good | |||||
N301 | 2772 | 0.13–0.25 | Medium-good | |||||
W541 | 3049 | 0.13–0.50 | Poor-medium | |||||
W541 | 3073.64 | 0.13–0.25 | Poor-medium | |||||
W631 | 2768 | 0.13–0.25 | Medium | |||||
W631 | 2776.99 | Unequal grain | Poor | |||||
W631 | 2803.37 | 0.13–0.50 | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xie, J.; Gu, K.; Zhao, H.; Li, C.; Hao, X. Sedimentary Characteristics and Model of Lacustrine Deep Water Gravity Flow in the Third Member of Paleogene Shahejie Formation in Niuzhuang Sag, Bohai Bay Basin, China. J. Mar. Sci. Eng. 2023, 11, 1598. https://doi.org/10.3390/jmse11081598
Zhang Y, Xie J, Gu K, Zhao H, Li C, Hao X. Sedimentary Characteristics and Model of Lacustrine Deep Water Gravity Flow in the Third Member of Paleogene Shahejie Formation in Niuzhuang Sag, Bohai Bay Basin, China. Journal of Marine Science and Engineering. 2023; 11(8):1598. https://doi.org/10.3390/jmse11081598
Chicago/Turabian StyleZhang, Yuanpei, Jun Xie, Kuiyan Gu, Haibo Zhao, Chuanhua Li, and Xiaofan Hao. 2023. "Sedimentary Characteristics and Model of Lacustrine Deep Water Gravity Flow in the Third Member of Paleogene Shahejie Formation in Niuzhuang Sag, Bohai Bay Basin, China" Journal of Marine Science and Engineering 11, no. 8: 1598. https://doi.org/10.3390/jmse11081598
APA StyleZhang, Y., Xie, J., Gu, K., Zhao, H., Li, C., & Hao, X. (2023). Sedimentary Characteristics and Model of Lacustrine Deep Water Gravity Flow in the Third Member of Paleogene Shahejie Formation in Niuzhuang Sag, Bohai Bay Basin, China. Journal of Marine Science and Engineering, 11(8), 1598. https://doi.org/10.3390/jmse11081598