Trajectory Tracking Design for Unmanned Surface Vessels: Robust Control Approach
Abstract
:1. Introduction
2. Model of the Controlled USV
3. Nonlinear Control Design
3.1. Trajectory Generator
3.2. Control Law Designs
3.2.1. Feedback Linearization Control Design (FL)
3.2.2. Robust Feedback Linearization Control Design (RFL)
4. Simulation Results
4.1. Specifications of the Controlled USV, Modeling Uncertainties and Environmental Disturbances
4.2. Trajectory-Tracking Performance Verification with Respect to Different Attenuation Levels ρ
4.3. Scenario 1 (Ramp Trajectory)
4.4. Scenario 2 (U-Shaped Trajectory)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Protector Unmanned Surface Vehicle (USV). Available online: https://www.naval-technology.com/projects/protector-unmanned-surface-vehicle/ (accessed on 26 June 2013).
- Yara to Start Operating the World’s First Fully Emission-Free Container Ship. Available online: https://www.yara.com/corporate-releases/yara-to-start-operating-the-worlds-first-fully-emission-free-container-ship/ (accessed on 19 November 2021).
- Moradi, M.H.; Katebi, M.R. Predictive PID Control for Ship Autopilot Design. IFAC Proc. 2001, 34, 375–380. [Google Scholar] [CrossRef]
- Malecki, J. Applying of Fuzzy Logic to Precise Control of the Ship Motion. In Proceedings of the 2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), Sliema, Malta, 17 August 2015. [Google Scholar]
- Ahmed, Y.; Hasegawa, K. Fuzzy Reasoned Waypoint Controller for Automatic Ship Guidance. IFAC-PapersOnLine 2016, 49, 604–609. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Keyser, R.; Ionescu, C.M. The Application of a New PID Autotuning Method for the Steam/Water Loop in Large Scale Ships. Processes 2020, 8, 196. [Google Scholar] [CrossRef]
- Du, J.; Hu, X.; Sun, Y. Adaptive Robust Nonlinear Control Design for Course Tracking of Ships Subject to External Disturbances and Input Saturation. IEEE Trans. Syst. Man Cyber. Syst. 2020, 50, 193–202. [Google Scholar] [CrossRef]
- Zwierzewicz, Z.; Dorobczyński, L.; Jaszczak, S. Design of Ship Course-keeping System via Active Disturbance Rejection Control Using a Full-scale Realistic Ship Model. Proc. Comp. Sci. 2021, 192, 3000–3009. [Google Scholar] [CrossRef]
- Dong, Z.; Bao, T.; Zhang, X.; Yang, L.; Song, L.; Mao, Y. Heading Control of Unmanned Marine Vehicles Based on an Improved Robust Adaptive Fuzzy Neural Network Control Algorithm. IEEE Access 2019, 7, 9704–9713. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Wen, J.; Zhang, G.; Liu, Y. Adaptive Navigating Control Based on the Parallel Action-Network ADHDP Method for Unmanned Surface Vessel. Adv. Mat. Sci. Eng. 2019, 2019, 7697143. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, H.; Tan, Y. Robust Adaptive Path Following Control of an Unmanned Surface Vessel Subject to Input Saturation and Uncertainties. Appl. Sci. 2019, 9, 1815. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Lee, C.-Y.; Tseng, S.-H.; Hu, W.-M. Nonlinear Optimal Control Law of Autonomous Unmanned Surface Vessels. Appl. Sci. 2020, 10, 1686. [Google Scholar] [CrossRef]
- Hsu, L.; Oliveira, T.R.; Cunha, J.P.V.S.; Yan, L. Adaptive Unit Vector Control of Multivariable Systems Using Monitoring Functions. Int. J. Robust Nonlinear Cont. 2019, 29, 583–600. [Google Scholar] [CrossRef]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control, 1st ed.; Wiley: New York, NY, USA, 2011; pp. 1–528. [Google Scholar]
- McKinley, S.; Levine, M. Cubic Spline Interpolation. Colle. Red. 1998, 45, 1049–1060. [Google Scholar]
- Chen, Y.-Y. Robust Terminal Guidance Law Design for Missiles Against Maneuvering Targets. Aero. Sci. Tech. 2016, 54, 198–207. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Fang, M.-C. Nonlinear Control Law Design of Unmanned Surface Vessels. J. Tw. Soc. Nav. Arch. Mar. Eng. 2013, 32, 83–89. [Google Scholar]
6 DOF | Forces (Body-Frame/Earth-Frame) (Control Command) | Linear Velocities (Body Frame) | Positions (Earth Frame) |
---|---|---|---|
1. Motion in the x direction (surge) | Fx/FxE | u | X |
2. Motion in the y direction (sway) | Fy/FyE | v | Y |
3.Motion in the z direction (heave) | Fz/FzE | w | Z |
Moments | Angular velocities | Euler angles | |
4. Rotation about the x axis (roll) | τϕ/τϕE | p | ϕ |
5. Rotation about the y axis (pitch) | τθ/τθE | q | θ |
6. Rotation about the z axis (yaw) | τψ/τ ψE | r | ψ |
Parameter | Value | Parameter | Value |
---|---|---|---|
L (m) | 1.7 | B (m) | 0.4 |
T (m) | 0.3 | XG (m) | 0.13 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Vω (m/s) | 1.7 | B (m) | 0.4 |
CYw (γR) | 0.3 | XG (m) | 0.13 |
ρair (kg/m3) | 1.1644 | ρwater (kg/m3) | 1025 |
G (m/s2) | 9.8 | N | 1000 |
β | [−π, π] | Ai | 3 |
ϕi | [0, 2π] | λi | 1 |
No. | Waypoints (xg, yg) (m) | No. | Waypoints (xg, yg) (m) |
---|---|---|---|
1 | (7, −15) | 7 | (37, 15) |
2 | (12, −10) | 8 | (42, 20) |
3 | (17, −5) | 9 | (47, 25) |
4 | (22, −0) | 10 | (52, 30) |
5 | (27, 5) | 11 | (57, 35) |
6 | (32, 10) |
X (m) | Y (m) | ψ (Degree) |
---|---|---|
7 | −15.5 | 90 |
No. | Waypoints (xg, yg) (m) | No. | Waypoints (xg, yg) (m) |
---|---|---|---|
1 | (−2, −15) | 11 | (48, 11) |
2 | (2, −15) | 12 | (38, 14) |
3 | (6, −15) | 13 | (28, 13) |
4 | (8, −15) | 14 | (16, 9.5) |
5 | (12, −15) | 15 | (12, 9) |
6 | (16, −15.5) | 16 | (8, 9) |
7 | (28, −19) | 17 | (6, 9) |
8 | (38, −20) | 18 | (2, 9) |
9 | (48, −17) | 19 | (−2, 9) |
10 | (52, −3) |
X (m) | Y (m) | ψ (Degree) |
---|---|---|
−2.5 | −15.5 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-H.; Ellis-Tiew, M.-Z.; Chan, Y.-H.; Lin, G.-W.; Chen, Y.-Y. Trajectory Tracking Design for Unmanned Surface Vessels: Robust Control Approach. J. Mar. Sci. Eng. 2023, 11, 1612. https://doi.org/10.3390/jmse11081612
Chen Y-H, Ellis-Tiew M-Z, Chan Y-H, Lin G-W, Chen Y-Y. Trajectory Tracking Design for Unmanned Surface Vessels: Robust Control Approach. Journal of Marine Science and Engineering. 2023; 11(8):1612. https://doi.org/10.3390/jmse11081612
Chicago/Turabian StyleChen, Yung-Hsiang, Ming-Zhen Ellis-Tiew, Yu-Hsiang Chan, Guan-Wun Lin, and Yung-Yue Chen. 2023. "Trajectory Tracking Design for Unmanned Surface Vessels: Robust Control Approach" Journal of Marine Science and Engineering 11, no. 8: 1612. https://doi.org/10.3390/jmse11081612
APA StyleChen, Y. -H., Ellis-Tiew, M. -Z., Chan, Y. -H., Lin, G. -W., & Chen, Y. -Y. (2023). Trajectory Tracking Design for Unmanned Surface Vessels: Robust Control Approach. Journal of Marine Science and Engineering, 11(8), 1612. https://doi.org/10.3390/jmse11081612