Resolved CFD-DEM Simulation of Free Settling of Polyhedral Particles with Various Orientations: Insights Provided by Oscillation Behavior in Quiescent Liquid
Abstract
:1. Introduction
2. Methodology of Resolved CFD-DEM
2.1. Governing Equations of DEM
2.2. Immersed Boundary Methods for Fluid
2.3. Numerical Scheme of Fluid–Particle Interaction
3. Method Verification
4. Establishment of the CFD-DEM Model
5. Numerical Results of Free-Settling
5.1. Horizontal Deposing Particles Cases
5.1.1. Effects of the Particle Shape on Free Settling Velocity
5.1.2. Kinematics Behavior during Settling
5.1.3. Hydrodynamic Characteristics in the Fluid
5.2. Vertical Deposing Particles Cases
5.2.1. Effects of the Particle Shape on Free-Settling Velocity
5.2.2. Kinematics Behavior during Settling
5.2.3. Hydrodynamic Characteristics in the Fluid
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shahi, S.; Kuru, E. An experimental investigation of settling velocity of natural sands in water using Particle Image Shadowgraph. Powder Technol. 2015, 281, 184–192. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Y.; Yu, X.B. Influence of particle shape on the erodibility of non-cohesive soil: Insights from coupled CFD–DEM simulations. Particuology 2018, 39, 12–24. [Google Scholar] [CrossRef]
- Ten Cate, A.; Nieuwstad, C.; Derksen, J.J.; Van den Akker, H. Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 2002, 14, 4012–4025. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L.; Yang, Q. Hydro-mechanical analysis of calcareous sand with a new shape-dependent fluid-particle drag model integrated into CFD-DEM coupling program. Powder Technol. 2019, 344, 108–120. [Google Scholar] [CrossRef]
- Lai, Z.; Zhao, J.; Zhao, S.; Huang, L. Signed distance field enhanced fully resolved CFD-DEM for simulation of granular flows involving multiphase fluids and irregularly shaped particles. Comput. Methods Appl. Mech. Eng. 2023, 414, 116195. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Yang, Z. Suffusion-induced deformation and microstructural change of granular soils: A coupled CFD–DEM study. Acta Geotech. 2019, 14, 795–814. [Google Scholar] [CrossRef]
- Ma, Q.; Wautier, A.; Zhou, W. Microscopic mechanism of particle detachment in granular materials subjected to suffusion in anisotropic stress states. Acta Geotech. 2021, 16, 2575–2591. [Google Scholar] [CrossRef]
- Temam, R. Navier-Stokes Equations: Theory and Numerical Analysis; American Mathematical Soc.: Providence, RI, USA, 2001; Volume 343. [Google Scholar]
- Hermange, C.; Oger, G.; Le Chenadec, Y.; Le Touzé, D. A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground. Comput. Methods Appl. Mech. Eng. 2019, 355, 558–590. [Google Scholar] [CrossRef]
- Zawawi, M.H.; Saleha, A.; Salwa, A.; Hassan, N.; Zahari, N.M.; Ramli, M.Z.; Muda, Z.C. A review: Fundamentals of computational fluid dynamics (CFD). In AIP Conference Proceedings; AIP Publishing: New York City, NY, USA, 2018; Volume 2030. [Google Scholar]
- Husson, J.; Terracol, M.; Deck, S.; Le Garrec, T. Critical assessment of wall model numerical implementation in LBM. Comput. Fluids 2023, 257, 105857. [Google Scholar] [CrossRef]
- Tavarez, F.A.; Plesha, M.E. Discrete element method for modelling solid and particulate materials. Int. J. Numer. Methods Eng. 2007, 70, 379–404. [Google Scholar] [CrossRef]
- Wachs, A. A DEM-DLM/FD method for direct numerical simulation of particulate flows: Sedimentation of polygonal isometric particles in a Newtonian fluid with collisions. Comput. Fluids 2009, 38, 1608–1628. [Google Scholar] [CrossRef]
- Ren, B.; Jin, Z.; Gao, R.; Wang, Y.X.; Xu, Z.L. SPH-DEM modeling of the hydraulic stability of 2D blocks on a slope. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 04014022. [Google Scholar] [CrossRef]
- Wu, K.; Yang, D.; Wright, N. A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. Comput. Struct. 2016, 177, 141–161. [Google Scholar] [CrossRef]
- Canelas, R.B.; Crespo, A.J.; Domínguez, J.M.; Ferreira, R.M.; Gómez-Gesteira, M. SPH–DCDEM model for arbitrary geometries in free surface solid–fluid flows. Comput. Phys. Commun. 2016, 202, 131–140. [Google Scholar] [CrossRef]
- Han, K.; Feng, Y.; Owen, D. Numerical simulations of irregular particle transport in turbulent flows using coupled LBM-DEM. Comput. Model. Eng. Sci. 2007, 18, 87. [Google Scholar]
- De Rosis, A.; Falcucci, G.; Ubertini, S.; Ubertini, F. A coupled lattice Boltzmann-finite element approach for two-dimensional fluid–structure interaction. Comput. Fluids 2013, 86, 558–568. [Google Scholar] [CrossRef]
- Xiong, H.; Yin, Z.Y.; Zhao, J.; Yang, Y. Investigating the effect of flow direction on suffusion and its impacts on gap-graded granular soils. Acta Geotech. 2021, 16, 399–419. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, Z.; Sun, X.; Yin, Z.y.; Chen, X. Clogging effect of fines in seepage erosion by using CFD–DEM. Comput. Geotech. 2022, 152, 105013. [Google Scholar] [CrossRef]
- Chen, F.; Xiong, H.; Wang, X.; Yin, Z.Y. Transmission effect of eroded particles in suffusion using the CFD-DEM coupling method. Acta Geotech. 2022, 18, 335–354. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Huang, B.; Hu, T.; Ling, D. Review on numerical simulation of the internal soil erosion mechanisms using the discrete element method. Water 2021, 13, 169. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, T.; Liu, F.; Peng, M.; Furtney, J.; Zhang, L. Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: Implications to suffusion in gap-graded soils. Comput. Geotech. 2020, 124, 103617. [Google Scholar] [CrossRef]
- Xiong, H.; Qiu, Y.; Liu, J.; Yin, Z.Y.; Chen, X. Macro–microscopic mechanism of suffusion in calcareous sand under tidal fluctuations by coupled CFD-DEM. Comput. Geotech. 2023, 162, 105676. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, Z.; Yang, J.; Yin, Z.Y.; Chen, X. Role of inherent anisotropy in infiltration mechanism of suffusion with irregular granular skeletons. Comput. Geotech. 2023, 162, 105692. [Google Scholar] [CrossRef]
- Kanitz, M.; Grabe, J. The influence of the void fraction on the particle migration: A coupled computational fluid dynamics–discrete element method study about drag force correlations. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 45–63. [Google Scholar] [CrossRef]
- Golshan, S.; Sotudeh-Gharebagh, R.; Zarghami, R.; Mostoufi, N.; Blais, B.; Kuipers, J. Review and implementation of CFD-DEM applied to chemical process systems. Chem. Eng. Sci. 2020, 221, 115646. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Yang, Z. Suffusion-induced evolution of mechanical and microstructural properties of gap-graded soils using CFD-DEM. J. Geotech. Geoenvironmental Eng. 2020, 146, 04020024. [Google Scholar] [CrossRef]
- Qian, J.G.; Li, W.Y.; Yin, Z.Y.; Yang, Y. Influences of buried depth and grain size distribution on seepage erosion in granular soils around tunnel by coupled CFD-DEM approach. Transp. Geotech. 2021, 29, 100574. [Google Scholar] [CrossRef]
- Mu, L.; Zhang, P.; Shi, Z.; Huang, M. Coupled CFD–DEM investigation of erosion accompanied by clogging mechanism under different hydraulic gradients. Comput. Geotech. 2023, 153, 105058. [Google Scholar] [CrossRef]
- Anderson, T.B.; Jackson, R. Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 1967, 6, 527–539. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, Y.; Yang, Q. A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Comput. Geotech. 2018, 100, 30–51. [Google Scholar] [CrossRef]
- Bérard, A.; Patience, G.S.; Blais, B. Experimental methods in chemical engineering: Unresolved CFD-DEM. Can. J. Chem. Eng. 2020, 98, 424–440. [Google Scholar] [CrossRef]
- Schnorr Filho, E.A.; Lima, N.C.; Franklin, E.M. Resolved CFD-DEM simulations of the hydraulic conveying of coarse grains through a very-narrow elbow. Powder Technol. 2022, 395, 811–821. [Google Scholar] [CrossRef]
- Gago, P.A.; Raeini, A.Q.; King, P. A spatially resolved fluid-solid interaction model for dense granular packs/soft-sand. Adv. Water Resour. 2020, 136, 103454. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, L.; Liu, Z.; Chen, M.; Xia, X.; Zhao, Y. A review of recent development for the CFD-DEM investigations of non-spherical particles. Powder Technol. 2022, 412, 117972. [Google Scholar] [CrossRef]
- Song, S.; Park, S. Unresolved CFD and DEM coupled solver for particle-laden flow and its application to single particle settlement. J. Mar. Sci. Eng. 2020, 8, 983. [Google Scholar] [CrossRef]
- Zhou, C.; Qian, J.G.; Yin, Z.Y.; Liu, Y.J.; Du, Z.B. Effect of particle shape and bedding angle on suffusion in gap-graded granular soils by coupled CFD-DEM method. Int. J. Numer. Anal. Methods Geomech. 2023, 47, 1373–1398. [Google Scholar] [CrossRef]
- Chen, Q.; Xiong, T.; Zhang, X.; Jiang, P. Study of the hydraulic transport of non-spherical particles in a pipeline based on the CFD-DEM. Eng. Appl. Comput. Fluid Mech. 2020, 14, 53–69. [Google Scholar] [CrossRef]
- Ning, Z.; Boerefijn, R.; Ghadiri, M.; Thornton, C. Distinct element simulation of impact breakage of lactose agglomerates. Adv. Powder Technol. 1997, 8, 15–37. [Google Scholar] [CrossRef]
- Williams, J.R.; Pentland, A.P. Superquadrics and modal dynamics for discrete elements in interactive design. Eng. Comput. 1992, 9, 115–127. [Google Scholar] [CrossRef]
- Wadell, H. Volume, shape, and roundness of rock particles. J. Geol. 1932, 40, 443–451. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: New York, NY, USA, 2005; Volume 3. [Google Scholar]
- Zou, Y.; Chen, C.; Zhang, L. Simulating progression of internal erosion in gap-graded sandy gravels using coupled CFD-DEM. Int. J. Geomech. 2020, 20, 04019135. [Google Scholar] [CrossRef]
- Hertz, H. Über die Berührung Fester Elastischer Körper (on the contact of elastic solids). J. FüR Reine Angew. Math. 1986, 92, 156. [Google Scholar]
- Tsuji, Y.; Tanaka, T.; Ishida, T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 1992, 71, 239–250. [Google Scholar] [CrossRef]
- Mindlin, R.D.; Deresiewicz, H. Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 1953, 20, 327–344. [Google Scholar] [CrossRef]
- Peskin, C.S. Flow patterns around heart valves: A numerical method. J. Comput. Phys. 1972, 10, 252–271. [Google Scholar] [CrossRef]
- Verzicco, R. Immersed boundary methods: Historical perspective and future outlook. Annu. Rev. Fluid Mech. 2023, 55, 129–155. [Google Scholar] [CrossRef]
- Saiki, E.M.; Biringen, S. Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method. J. Comput. Phys. 1996, 123, 450–465. [Google Scholar] [CrossRef]
- Lai, M.C.; Peskin, C.S. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 2000, 160, 705–719. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M. Semi-resolved CFD–DEM for thermal particulate flows with applications to fluidized beds. Int. J. Heat Mass Transf. 2020, 159, 120150. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, S.; Xiong, H.; Yin, Z.y.; Chen, X. Micro pore analysis of suffusion in filter layer using tri-layer CFD–DEM model. Comput. Geotech. 2023, 156, 105303. [Google Scholar] [CrossRef]
- Bao, X.; Wu, H.; Xiong, H.; Chen, X. Particle shape effects on submarine landslides via CFD-DEM. Ocean Eng. 2023, 284, 115140. [Google Scholar] [CrossRef]
- Chen, F.; Xiong, H.; Yin, Z.Y.; Chen, X. Impermeable and mechanical stability of filter cake under different infiltration conditions via CFD-DEM. Acta Geotech. 2023, 18, 4115–4140. [Google Scholar] [CrossRef]
- Stringham, G.E.; Simons, D.B.; Guy, H.P. The Behavior of Large Particles Falling in Quiescent Liquids; US Government Printing Office: Washington, DC, USA, 1969.
- Xie, Z.; Wang, S.; Shen, Y. A novel hybrid CFD-DEM method for high-fidelity multi-resolution modelling of cross-scale particulate flow. Chem. Eng. J. 2023, 455, 140731. [Google Scholar] [CrossRef]
- Karimi, D.; Jaguemont, J.; Behi, H.; Berecibar, M.; Van Den Bossche, P.; Van Mierlo, J. Passive cooling based battery thermal management using phase change materials for electric vehicles. In Proceedings of the EVS33 International Electric Vehicle Symposium, Portland, OR, USA, 14–17 June 2020. [Google Scholar]
- Hlawatsch, M.; Sadlo, F.; Weiskopf, D. Hierarchical line integration. IEEE Trans. Vis. Comput. Graph. 2010, 17, 1148–1163. [Google Scholar] [CrossRef]
- Wu, S.; Zuo, Z.; Stone, H.A.; Liu, S. Motion of a free-settling spherical particle driven by a laser-induced bubble. Phys. Rev. Lett. 2017, 119, 084501. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.J.; Yao, Z.G.; Luo, Y.T.; Dong, X.Y. Study on landslide-induced wave disasters using a 3D coupled SPH-DEM method. Bull. Eng. Geol. Environ. 2020, 79, 467–483. [Google Scholar] [CrossRef]
Numerical Case | Aspect Ratio | Corner Number | Release Direction |
---|---|---|---|
A1.25C20-H | 1.25 | 20 | Horizontal |
A1.25C50-H | 1.25 | 50 | Horizontal |
A1.5C20-H | 1.5 | 20 | Horizontal |
A1.5C50-H | 1.5 | 50 | Horizontal |
A1.75C20-H | 1.75 | 20 | Horizontal |
A1.75C50-H | 1.75 | 50 | Horizontal |
A2C20-H | 2.0 | 20 | Horizontal |
A2C20-H | 2.0 | 50 | Horizontal |
A1.25C20-V | 1.25 | 20 | Vertical |
A1.25C50-V | 1.25 | 50 | Vertical |
A1.5C20-V | 1.5 | 20 | Vertical |
A1.5C50-V | 1.5 | 50 | Vertical |
Property | Unit | Value |
---|---|---|
Fluid | ||
Density | kg·m−3 | |
Dynamic viscosity | Pa·s | |
CFD time step size | s | |
Temperature | °C | 25 |
Fluid cell size () | mm | 0.8 |
Particle | ||
Density | kg·m−3 | |
Young’s modulus | GPa | 0.1 |
Poisson’s ratio | − | 0.3 |
Particle friction coefficient | − | 0.2 |
Restitution coefficient | − | 0.3 |
DEM time step size | s | |
Fluid—particle interaction | ||
Coupling duration | s | 1 |
Coupling time step size | s | |
Coupling steps | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Qiu, Y.; Xiong, H.; Tang, R. Resolved CFD-DEM Simulation of Free Settling of Polyhedral Particles with Various Orientations: Insights Provided by Oscillation Behavior in Quiescent Liquid. J. Mar. Sci. Eng. 2023, 11, 1685. https://doi.org/10.3390/jmse11091685
Zhang Z, Qiu Y, Xiong H, Tang R. Resolved CFD-DEM Simulation of Free Settling of Polyhedral Particles with Various Orientations: Insights Provided by Oscillation Behavior in Quiescent Liquid. Journal of Marine Science and Engineering. 2023; 11(9):1685. https://doi.org/10.3390/jmse11091685
Chicago/Turabian StyleZhang, Zhimin, Yuanyi Qiu, Hao Xiong, and Rui Tang. 2023. "Resolved CFD-DEM Simulation of Free Settling of Polyhedral Particles with Various Orientations: Insights Provided by Oscillation Behavior in Quiescent Liquid" Journal of Marine Science and Engineering 11, no. 9: 1685. https://doi.org/10.3390/jmse11091685
APA StyleZhang, Z., Qiu, Y., Xiong, H., & Tang, R. (2023). Resolved CFD-DEM Simulation of Free Settling of Polyhedral Particles with Various Orientations: Insights Provided by Oscillation Behavior in Quiescent Liquid. Journal of Marine Science and Engineering, 11(9), 1685. https://doi.org/10.3390/jmse11091685