Phytoplankton Dynamics and Biogeochemistry: Model Studies
Abstract
:1. Introduction
- The minimum nitrogen and phosphorus quotas;
- Half-saturation constants for nitrogen and phosphorus uptake;
- The maximum specific growth rate of the dominant phytoplankton species.
2. Model
2.1. Modeling Protocol and Parameterization
2.2. Conceptual Scheme
3. Results
3.1. Results of Computational Experiments
3.2. The Spring
3.3. The End of Spring–Early Summer
3.4. Summer
4. Discussion
- The minimum nitrogen and phosphorus quotas;
- Half-saturation constants for nitrogen and phosphorus uptake;
- The maximum specific growth rate of the dominant phytoplankton species.
4.1. Spring
4.2. The Late Spring and Early Summer
4.3. Summer
4.4. Seasonal Phytoplankton Dynamic as the Dynamic of Parameters of the Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Inte-grating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef]
- Sarmiento, J.L.; Gruber, N. Ocean Biogeochemical Dynamics; Princeton University Press: Princeton, NJ, USA, 2006; p. 526. [Google Scholar]
- Legendre, L.; Rivkin, R.B.; Weinbauer, M.G.; Guidi, L.; Uitz, J. The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean. Prog. Oceanogr. 2015, 134, 432–450. [Google Scholar] [CrossRef]
- Cermeno, P.; Dutkiewicz, S.; Harris, R.P.; Follows, M.; Schofield, O.; Falkowski, P.G. The role of nutricline depth in regulating the ocean carbon cycle. Proc. Natl. Acad. Sci. USA 2008, 105, 20344–20349. [Google Scholar] [CrossRef]
- Litchman, E.; de Tezanos Pinto, P.; Edwards, K.F.; Klausmeier, C.A.; Kremer, C.T.; Thomas, M.K. Global Biogeochemical Impacts of Phytoplankton: A Trait-Based Perspective. J. Ecol. 2015, 103, 1384–1396. [Google Scholar] [CrossRef]
- Silkin, V.A.; Pautova, L.A.; Giordano, M.; Chasovnikov, V.K.; Vostokov, S.V.; Podymov, O.I.; Pakhomova, S.V.; Moskalenko, L.V. Drivers of phytoplankton blooms in the northeastern Black Sea. Mar. Poll. Bull. 2019, 138, 274–284. [Google Scholar] [CrossRef]
- Pautova, L.A.; Mikaelyan, A.S.; Silkin, V.A. Structure of plankton phytocoenoses in the shelf waters of the northeastern Black Sea during the Emiliania huxleyi bloom in 2002–2005. Oceanology 2007, 47, 377–385. [Google Scholar] [CrossRef]
- Mikaelyan, A.S.; Pautova, L.A.; Chasovnikov, V.K.; Mosharov, S.A.; Silkin, V.A. Alternation of diatoms and coccolithophores in the northeastern Black Sea: A response to nutrient changes. Hydrobiologia 2015, 755, 89–105. [Google Scholar] [CrossRef]
- Silkin, V.; Pautova, L.; Podymov, O.; Chasovnikov, V.; Lifanchuk, A.; Fedorov, A.; Kluchantseva, A. Phytoplankton Dynamics and Biogeochemistry of the Black Sea. J. Mar. Sci. Eng. 2023, 11, 1196. [Google Scholar] [CrossRef]
- Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef]
- Droop, M.R. The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. United Kingd. 1974, 54, 825–855. [Google Scholar] [CrossRef]
- Tilman, D. Resource competition between planktonic algae: An experimental and theoretical approach. Ecology 1977, 58, 338–348. [Google Scholar] [CrossRef]
- Tilman, D. Resource Competition and Community Structure; Princeton University Press: Princeton, NJ, USA, 1982; p. 296. [Google Scholar]
- Grover, J.P. Resource Competition in a Variable Environment: Phytoplankton Growing According to the Variable-Internal-Stores Model. Am. Nat. 1991, 138, 811–835. [Google Scholar] [CrossRef]
- Grover, J.P.; Holt, R.D. Disentangling Resource and Apparent Competition: Realistic Models for Plant-herbivore Communities. J. Theor. Biol. 1998, 191, 353–376. [Google Scholar] [CrossRef]
- Silkin, V.A.; Pautova, L.A.; Pakhomova, S.V.; Lifanchuk, A.V.; Yakushev, E.V.; Chasovnikov, V.K. Environmental Control on Phytoplankton Community Structure in the NE Black Sea. JEMBE 2014, 461, 267–274. [Google Scholar] [CrossRef]
- Finkel, Z.V.; Follows, M.J.; Liefer, J.D.; Brown, C.M.; Benner, I.; Irwin, A.J. Phylogenetic Diversity in the Macromolecular Composition of Microalgae. PLoS ONE 2016, 11, e0155977. [Google Scholar] [CrossRef] [PubMed]
- Baas-Becking, L.G.M. Geobiologie of Inleiding Tot de Milieukunde; W.P. Van Stockum & Zoon: The Hague, The Netherlands, 1934. (In Dutch) [Google Scholar]
- Silkin, V.; Fedorov, A.; Flynn, K.J.; Paramonov, L.; Pautova, L. Protoplasmic Streaming of Chloroplasts Enables Rapid Photoacclimation in Large Diatoms. J. Plankton Res. 2021, 43, 831–845. [Google Scholar] [CrossRef]
- Jiang, X.; Li, H.; Tong, S.; Gao, K. Nitrogen Limitation Enhanced Calcification and Sinking Rate in the Coccolithophorid Gephyrocapsa Oceanica Along With Its Growth Being Reduced. Front. Mar. Sci. 2022, 9, 834358. [Google Scholar] [CrossRef]
- Rokitta, S.D.; Rost, B. Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 2012, 57, 607–618. [Google Scholar] [CrossRef]
- Miao, H.; Beardall, J.; Gao, K. Calcification Moderates the Increased Susceptibility to UV Radiation of the Coccolithophorid Gephryocapsa oceanica Grown under Elevated CO2 Concentration: Evidence Based on Calcified and Non-calcified Cells. Photochem. Photobiol. 2018, 94, 825–1081. [Google Scholar] [CrossRef]
- Siegel, D.A.; Doney, S.C.; Yoder, J.A. The North Atlantic spring phytoplankton bloom and Sverdrup’s critical depth hypothesis. Science 2002, 296, 730–733. [Google Scholar] [CrossRef]
- Smayda, T. Patterns of Variability Characterizing Marine Phytoplankton, with Examples from Narragansett Bay. ICES J. Mar. Sci. 1998, 55, 562–573. [Google Scholar] [CrossRef]
- Smayda, T.J. Ecological features of harmful algal blooms in coastal upwelling ecosystems. S. Afr. J. Mar. Sci. 2000, 22, 219–253. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Perovich, D.K.; Pickart, R.S.; Brown, Z.W.; van Dijken, G.L.; Lowry, K.E.; Mills, M.M.; Palmer, M.A.; Balch, W.M.; Bahr, F.; et al. Massive Phytoplankton Blooms Under Arctic Sea Ice. Science 2012, 336, 1408. [Google Scholar] [CrossRef]
- Sverdrup, H.U. On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer. 1953, 18, 287–295. [Google Scholar] [CrossRef]
- Eppley, R.W.; Rogers, J.N.; McCarthy, J.J. Half saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 1969, 14, 912–920. [Google Scholar] [CrossRef]
- Hecky, R.E.; Kilham, P. Nutrient Limitation of Phytoplankton in Freshwater and Marine Environments: A Review of Recent Evidence on the Effects of Enrichment. Limnol. Oceanogr. 1988, 33, 796–822. [Google Scholar] [CrossRef]
- Howarth, R.W.; Marino, R. Nitrogen as the Limiting Nutrient for Eutrophication in Coastal Marine Ecosystems: Evolving Views over Three Decades. Limnol. Oceanogr. 2006, 51, 364–376. [Google Scholar] [CrossRef]
- Moore, C.M.; Mills, M.M.; Arrigo, K.R.; Berman-Frank, I.; Bopp, L.; Boyd, P.W.; Galbraith, E.D.; Geider, R.J.; Guieu, C.; Jaccard, S.L.; et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 2013, 6, 701–710. [Google Scholar] [CrossRef]
- Browning, T.J.; Moore, C.M. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. Nat Commun. 2023, 14, 5014. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Rodríguez, M.D.; Brown, C.W.; Doney, S.C.; Kleypas, J.; Kolber, D.; Kolber, Z.; Hayes, P.K.; Falkowski, P.G. Representing Key Phytoplankton Functional Groups in Ocean Carbon Cycle Models: Coccolithophorids. Glob. Biogeochem. Cycles 2002, 16, 47-1–47-20. [Google Scholar] [CrossRef]
- Brownlee, C.; Langer, G.G.; Wheeler, L. Coccolithophore calcification: Changing paradigms in changing oceans. Acta Biomater. 2021, 120, 4–11. [Google Scholar] [CrossRef]
- Elser, J.J.; Acharya, K.; Kyle, M.; Cotner, J.; Makino, W.; Markow, T.; Watts, T.; Hobbie, S.; Fagan, W.; Schade, J.; et al. Growth rate–stoichiometry couplings in diverse biota. Ecol. Lett. 2003, 6, 936–943. [Google Scholar] [CrossRef]
- Hessen, D.O.; Elser, J.J.; Sterner, R.W.; Urabe, J. Ecological stoichiometry: An elemental approach using basic principles. Limnol. Oceanogr. 2013, 58, 2219–2236. [Google Scholar] [CrossRef]
- Paasche, E.; Brubak, S. Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation. Phycologia 1994, 33, 324–330. [Google Scholar] [CrossRef]
- Shiraiwa, Y. Physiological regulation of carbon fixation in the photosynthesis and calcification of coccolithophorids. Comp. Biochem. Physiol. 2003, 136, 775–783. [Google Scholar] [CrossRef]
- Inomura, K.; Deutsch, C.; Jahn, O.; Dutkiewicz, S.; Follows, M.J. Global Patterns in Marine Organic Matter Stoichiometry Driven by Phytoplankton Ecophysiology. Nat. Geosci. 2022, 15, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, F.M.; Bach, L.T.; Brownlee, C.; Bown, P.; Rickaby, R.E.M.; Poulton, A.J.; Tyrrell, T.; Beaufort, L.; Dutkiewicz, S.; Gibbs, S.; et al. Why Marine Phytoplankton Calcify. Sci. Adv. 2016, 2, e1501822. [Google Scholar] [CrossRef] [PubMed]
- Villiot, N.; Poulton, A.J.; Butcher, E.T.; Daniels, L.R.; Coggins, A. Allometry of Carbon and Nitrogen Content and Growth Rate in a Diverse Range of Coccolithophores. J. Plankton Res. 2021, 43, 511–526. [Google Scholar] [CrossRef]
- Raven, J.A. The role of vacuoles. New Phytol. 1987, 106, 357–422. [Google Scholar] [CrossRef]
- Klausmeier, C.A.; Litchman, E.; Daufresne, T.; Levin, S.A. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 2004, 429, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Sarthou, G.; Timmermans, K.R.; Blain, S.; Tréguer, P. Growth Physiology and Fate of Diatoms in the Ocean: A Review. J. Sea Res. 2005, 53, 25–42. [Google Scholar] [CrossRef]
- Tantanasarit, C.; Englande, A.J.; Babel, S. Nitrogen, phosphorus and silicon uptake kinetics by marine diatom Chaetoceros calcitrans under high nutrient concentrations. JEMBE 2013, 446, 67–75. [Google Scholar] [CrossRef]
- Rhee, G.-Y. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 1978, 23, 10–25. [Google Scholar] [CrossRef]
- Silkin, V.A.; Khailov, K.M. Bioecological Mechanisms of Aquaculture Management; Nauka: Leningrad, Russia, 1988; p. 230. (In Russian) [Google Scholar]
- Meunier, C.L.; Malzahn, A.M.; Boersma, M. A New Approach to Homeostatic Regulation: Towards a Unified View of Physiological and Ecological Concepts. PLoS ONE 2014, 9, e107737. [Google Scholar] [CrossRef]
- Boyd, P.W.; Lennartz, S.T.; Glover, D.M.; Doney, S.C. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat. Clim. Chang. 2015, 5, 71–79. [Google Scholar] [CrossRef]
- Glibert, P.M. Margalef revisited: A new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 2016, 55, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Meunier, C.L.; Boersma, M.; El-Sabaawi, R.; Halvorson, H.M.; Herstoff, E.M.; Van de Waal, D.B.; Vogt, R.J.; Litchman, E. From Elements to Function: Toward Unifying Ecological Stoichiometry and Trait-Based Ecology. Front. Environ. Sci. 2017, 5, 18. [Google Scholar] [CrossRef]
Symbol | Description | Units |
---|---|---|
µmNO3 | Maximal speciefic growth rate under nitrogen limitation | day−1 |
µmPO4 | Maximal speciefic growth rate under phosphorus limitation | day−1 |
υmNO3 | Maximal nitrogen uptake rate | g N (day g wet wt)−1 |
υmPO4 | Maximal phosphorus uptake rate | g P (day g wet wt)−1 |
KNO3 | Half-saturation constant for nitrogen uptake | g m−3 |
KPO4 | Half-saturation constant for phosphorus uptake | g m−3 |
qN | Minimal nitrogen quota | g N (g wet wt)−1 |
q'N | qN increased by 30% | g N (g wet wt)−1 |
qP | Minimal phosphorus quota | g P (g wet wt) |
D | the rate of water exchange in the UML | day−1 |
C0NO3 | Disolved inorganic nitrogen concentration | µmol L−1 |
C0PO4 | Disolved inorganic phosphorus concentration | µmol L−1 |
Para- Meters | Spring | The End of Spring-Early Summer | Summer | ||||||
---|---|---|---|---|---|---|---|---|---|
Eh | Pn | Pa | Eh | Pn | Pa | Eh | Pn | Pa | |
µmNO3 | 1.5 | 3.5 | 1.5 | 1.5 | 2.3 | 1.5 | 1.5 | 1.5 | 1.5 |
µmPO4 | 1.55 | 3.5 | 1.22 | 1.55 | 2.3 | 1.22 | 1.55 | 1.5 | 1.22 |
υmNO3 | 0.00225 | 0.0105 | 0.006 | 0.00225 | 0.0069 | 0.006 | 0.00225 | 0.0045 | 0.006 |
υmPO4 | 0.00031 | 0.00035 | 0.00002 | 0.00031 | 0.00023 | 0.00002 | 0.00031 | 0.00015 | 0.00002 |
KNO3 | 0.0042 | 0.0112 | 0.028 | 0.0042 | 0.0112 | 0.028 | 0.0042 | 0.0112 | 0.028 |
KPO4 | 0.031 | 0.016 | 0.001 | 0.0031 | 0.0016 | 0.001 | 0.0031 | 0.0016 | 0.001 |
qN | 0.0015 | 0.003 | 0.004 | 0.0015 | 0.003 | 0.004 | 0.0015 | 0.003 | 0.004 |
qP | 0.0002 | 0.0001 | 0.00002 | 0.0002 | 0.0001 | 0.00002 | 0.0002 | 0.0001 | 0.00002 |
q'N | 0.001 | 0.002 | 0.003 | 0.001 | 0.002 | 0.003 | 0.001 | 0.002 | 0.003 |
C0NO3 | 1.8 | 0.55 | 1.3 | ||||||
C0PO4 | 1.1 | 0.1 | 0.01 | ||||||
D | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silkin, V.; Abakumov, A.; Esin, N.; Pautova, L.; Lifanchuk, A.; Fedorov, A. Phytoplankton Dynamics and Biogeochemistry: Model Studies. J. Mar. Sci. Eng. 2024, 12, 178. https://doi.org/10.3390/jmse12010178
Silkin V, Abakumov A, Esin N, Pautova L, Lifanchuk A, Fedorov A. Phytoplankton Dynamics and Biogeochemistry: Model Studies. Journal of Marine Science and Engineering. 2024; 12(1):178. https://doi.org/10.3390/jmse12010178
Chicago/Turabian StyleSilkin, Vladimir, Alexander Abakumov, Nikolay Esin, Larisa Pautova, Anna Lifanchuk, and Alexey Fedorov. 2024. "Phytoplankton Dynamics and Biogeochemistry: Model Studies" Journal of Marine Science and Engineering 12, no. 1: 178. https://doi.org/10.3390/jmse12010178