Effects of Physical Properties and Environmental Conditions on the Natural Dispersion of Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Apparatus
2.2. Test Oil Characteristics
2.3. Experimental Design and Procedure
Hydrodynamic Conditions
2.4. Temperature Conditions
Salinity Conditions
2.5. Experimental Procedures
- (1)
- Test water is gradually injected into the container until the depth reaches 0.3m. Adjust the draught depth of the oil containment device to 2 cm.
- (2)
- Turn on the agitator to create waves. Slowly inject 150 mL of oil into the oil containment device using a syringe after the flow stabilizes. Record the initial thickness of the oil layer as h0 (2.16 cm) and the initial volume as Voil,1.
- (3)
- Collect water samples from 10 cm below the oil layer at intervals of 4.5, 8, 12, 24, 31, 37, 48, 72, 96, 120, 144, and 168 min after the test begins.
- (4)
- Turn off the agitator after 3 h. Collect the remaining oil in the oil containment device with a syringe into volumetric flasks, fill to the mark with distilled water, and weigh. Determine the volume of the remaining oil as Voil,2 from the weight difference between the sample and the weight of pure distilled water.
- (5)
- After each test, clean the residue of a small amount of oil adhered to the inner wall of the oil containment device and the container using oil absorption felt, a hydrophobic material that effectively adsorbs oil. The difference in weight of the felt before and after cleaning was measured to obtain a residual volume of Voil,3. Calculate the total dispersion volume of oil during the test as Voil,1-Voil,2-Voil,3. Repeat the test three times and calculate the average value for subsequent analysis.
2.6. Measurements of the Oil Concentration
2.7. Measurement of Oil Dispersion Rate and Efficiency
3. Results and Discussion
3.1. Effect of Temperature and Salinity on the Oil Dispersion
3.2. Effect of Mixing Energy on the Oil Dispersion
3.3. Effect of Oil Type on the Oil Dispersion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Academies of Sciences, Engineering, and Medicine. Oil in the Sea IV: Inputs, Fates, and Effects; The National Academies Press: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Han, L.; Wang, C.; Jiang, A. Research progress of migration and transformation of oil pollutants from emergency spills in water. Water Resour. Prot. 2021, 37, 110–117. [Google Scholar]
- Zeinstra-Helfrich, M.; Koops, W.; Dijkstra, K.; Murk, A.J. Quantification of the effect of oil layer thickness on entrainment of surface oil. Mar. Pollut. Bull. 2015, 96, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.; Hansen, K.A. Sunken and submerged oil. In Oil Spill Science and Technology; Fingas, M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 731–758. [Google Scholar]
- Tkalich, P.; Chan, E.S. Vertical mixing of oil droplets by breaking waves. Mar. Pollut. Bull. 2002, 44, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- French-McCay, D.P.; Jayko, K.; Li, Z.; Spaulding, M.L.; Crowley, D.; Mendelsohn, D.; Horn, M.; Isaji, T.; Kim, Y.H.; Fontenault, J. Oil fate and mass balance for the Deepwater Horizon oil spill. Mar. Pollut. Bull. 2021, 171, 112681. [Google Scholar] [CrossRef] [PubMed]
- Ortmann, A.C.; Cobanli, S.E.; Wohlgeschaffen, G.; MacDonald, J.; Gladwell, A.; Davis, A.; Robinson, B.; Mason, J.; King, T.L. Measuring the fate of different diluted bitumen products in coastal surface waters. Mar. Pollut. Bull. 2020, 153, 111003. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Miller, J.; Wang, J.; Koley, S.S.; Katz, J. Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks. J. Geophys. Res. Ocean. 2017, 122, 7938–7957. [Google Scholar] [CrossRef]
- Boufadel, M.C.; Bechtel, R.D.; Weaver, J. The movement of oil under non-breaking waves. Mar. Pollut. Bull. 2006, 52, 1056–1065. [Google Scholar] [CrossRef]
- Li, Z.; Lee, K.; King, T.; Boufadel, M.C.; Venosa, A.D. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions. Mar. Pollut. Bull. 2009, 58, 735–744. [Google Scholar] [CrossRef]
- Holder, E.L.; Conmy, R.N.; Venosa, A.D. Comparative laboratory-scale testing of dispersant effectiveness of 23 crude oils using four different testing protocols. J. Environ. Prot. 2015, 6, 628. [Google Scholar] [CrossRef]
- Jiang, P.; Tong, S.; Wang, Y.; Xu, G. Modelling the oil spill transport in inland waterways based on experimental study. Environ. Pollut. 2021, 284, 117473. [Google Scholar] [CrossRef]
- Malarkey, J.; Davies, A.G. Modelling wave–current interactions in rough turbulent bottom boundary layers. Ocean. Eng. 1998, 25, 119–141. [Google Scholar] [CrossRef]
- Forrester, W.D. Distribution of suspended oil particles following the grounding of the tanker arrow. J. Mar. Res. 1971, 29, 151–170. [Google Scholar]
- Zhao, X.; Ya, Z.; Wang, Z.; Sun, B.; Fu, H.; Bénédicte, M.-C.J. Study on the Effects of Waves and Dispersant on the Submergence of Spilled Oil. Water Resour. 2020, 47, 95–102. [Google Scholar] [CrossRef]
- Chen, Z.; Zhan, C.S.; Lee, K.; Li, Z.K.; Boufadel, M. Modeling oil droplet formation and evolution under breaking waves. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 31, 438–448. [Google Scholar] [CrossRef]
- Yu, Y.; Qi, Z.; Li, W.; Fu, S.; Yu, X.; Xiong, D. Effects of physical parameters and chemical dispersant on the formation of oil-particle aggregates (OPAs) in marine environments. Mar. Pollut. Bull. 2019, 148, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhao, L.; Boufadel, M.C.; King, T.; Robinson, B.; Conmy, R.; Lee, K. Impact of mixing time and energy on the dispersion effectiveness and droplets size of oil. Chemosphere 2017, 166, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Merlin, F.; Yang, M.; Lee, K.; Chen, B.; Liu, B.; Cao, Y.; Song, X.; Ye, X.; Li, Q.K.; et al. Recent advances in chemical and biological degradation of spilled oil: A review of dispersants application in the marine environment. J. Hazard. Mater. 2022, 436, 129260. [Google Scholar] [CrossRef]
- Cao, R.; Chen, H.; Li, H.; Fu, H.; Wang, Y.; Bao, M.; Tuo, W.; Lv, X. A mesoscale assessment of sinking oil during dispersant treatment. Ocean. Eng. 2022, 263, 112341. [Google Scholar] [CrossRef]
- Li, W.; Yu, Y.; Xiong, D.; Qi, Z.; Wang, W.; Qi, Y. Effects of oil properties on the formation of oil-particle aggregates at the presence of chemical dispersant in baffled flask tests. J. Hazard. Mater. 2022, 436, 129227. [Google Scholar] [CrossRef]
- Li, Z.; Lee, K.; King, T.; Boufadel, M.C.; Venosa, A.D. Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank. Mar. Pollut. Bull. 2010, 60, 1550–1559. [Google Scholar] [CrossRef]
- Yu, Y.; Qi, Z.; Xiong, D.; Sun, R.; Fu, S.; Li, W. Oil dispersion and aggregation with suspended particles in a wave tank. J. Environ. Manag. 2021, 278, 111572. [Google Scholar] [CrossRef] [PubMed]
- El Hamouz, A. Effect of surfactant concentration and operating temperature on the drop size distribution of silicon oil water dispersion. J. Dispers. Sci. Technol. 2007, 28, 797–804. [Google Scholar] [CrossRef]
- Chandrasekar, S.; Sorial, G.A.; Weaver, J.W. Dispersant effectiveness on oil spills-impact of salinity. ICES J. Mar. Sci. 2006, 63, 1418–1430. [Google Scholar] [CrossRef]
- Riehm, D.A.; McCormick, A.V. The role of dispersants’ dynamic interfacial tension in effective crude oil spill dispersion. Mar. Pollut. Bull. 2014, 84, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Wrenn, B.; Virkus, A.; Mukherjee, B.; Venosa, A. Dispersibility of crude oil in fresh water. Environ. Pollut. 2009, 157, 1807–1814. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Yu, Y.; Yu, X.; Li, W.; Fu, S.; Xiong, D. Effect of the concentration and size of suspended particulate matter on oil-particle aggregation. Mar. Pollut. Bull. 2020, 153, 110957. [Google Scholar] [CrossRef] [PubMed]
- Pacek, A.W.; Nienow, A.W. High flow, low shear impellers versus high shear impellers; dispersion of oil drops in water and other examples. Chem. Process Eng. 2021, 42, 77–90. [Google Scholar]
- Cui, F.; Daskiran, C.; King, T.; Robinson, B.; Lee, K.; Katz, J.; Boufadel, M.C. Modeling oil dispersion under breaking waves. Part I: Wave hydrodynamics. Environ. Fluid Mech. 2020, 20, 1527–1551. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Qi, Y.; Qi, Z.; Xiong, D. Combined effects of chemical dispersant and suspended minerals on the dispersion process of spilled oil. J. Environ. Manag. 2023, 341, 118110. [Google Scholar] [CrossRef]
- Hoshyar, P.; Kolahdoozan, M.; Imanian, H. The effects of droplet size distribution and wave characteristics on the vertical dispersion of spilled oil due to regular non-breaking waves. J. Sea Res. 2023, 192, 102355. [Google Scholar] [CrossRef]
- Imanian, H.; Kolahdoozan, M. Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves. Int. J. Civ. Environ. Eng. 2016, 10, 1064–1067. [Google Scholar]
- Cheng, N.L. Handbook of Solvents, 4th ed.; Chemical Industry Press: Beijing, China, 2007; pp. 216–218. [Google Scholar]
- Li, Z.; Lee, K.; King, T.; Boufadel, M.C.; Venosa, A.D. Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions. Mar. Pollut. Bull. 2008, 56, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.; Johansen, Ø.; Leirvik, F.; Brørs, B. Numerical Algorithm to Compute the Effects of Breakingwaves on Surface Oil Spilled at Sea. Final Report Submitted to the Coastal Response Research Center, Report F; SINTEF Institute for Materials and Chemistry: Trondheim, Norway, 2009. [Google Scholar]
- Traykovski, P.; Trowbridge, J.; Kineke, G. Mechanisms of surface wave energy dissipation over a high-concentration sediment suspension. J. Geophys. Res. Ocean. 2015, 120, 1638–1681. [Google Scholar] [CrossRef]
- Terray, E.; Donelan, M.; Agrawal, Y.; Drennan, W.; Kahma, K.; Williams, A.; Hwang, P.; Kitaigorodskii, S. Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr. 1996, 26, 792–807. [Google Scholar] [CrossRef]
- Kaku, V.J.; Boufadel, M.C.; Venosa, A.D.; Weaver, J. Flow dynamics in eccentrically rotating flasks used for dispersant effectiveness testing. Environ. Fluid Mech. 2006, 6, 385–406. [Google Scholar] [CrossRef]
- Chen, N. The Power Calculation of the Stirrer Based on CFX. Chem. Equip. Technol. 2014, 35, 27–29. [Google Scholar]
- Delvigne, G.A.L.; Sweeney, C.E. Natural dispersion of oil. Oil Chem. Pollut. 1988, 4, 281–310. [Google Scholar] [CrossRef]
- Kennedy, J.J.; Rayner, N.A.; Atkinson, C.P.; Killick, R.E. An ensemble data set of sea surface temperature change from 1850: The Met Office Hadley Centre HadSST. 4.0. 0.0 data set. J. Geophys. Res. Atmos. 2019, 124, 7719–7763. [Google Scholar] [CrossRef]
- GB17378.4-2007; The Specification for Marine Monitoring-Part 4: Seawater Analysis. Chinese GB Standard: Beijing, China, 2007. Available online: https://www.antpedia.com/standard/en/5158340.html (accessed on 1 November 2023).
- Yang, Q.; Xu, J.; Li, W. Study of the dissolution process of oil spills at sea. Mar. Environ. Sci. 1992, 11, 24–28. [Google Scholar]
- Li, M.; Garrett, C. The relationship between oil droplet size and upper ocean turbulence. Mar. Pollut. Bull. 1998, 36, 961–970. [Google Scholar] [CrossRef]
- Mukherjee, B.; Turner, J.; Wrenn, B.A. Effect of oil composition on chemical dispersion of crude oil. Environ. Eng. Sci. 2011, 28, 497–506. [Google Scholar] [CrossRef]
- Jekabsons, G.; Lavendels, J.; Sitikovs, V. Model evaluation and selection in multiple nonlinear regression analysis. Math. Model. Anal. 2007, 12, 81–90. [Google Scholar] [CrossRef]
- Zeinstra-Helfrich, M.; Koops, W.; Murk, A.J. How oil properties and layer thickness determine the entrainment of spilled surface oil. Mar. Pollut. Bull. 2016, 110, 184–193. [Google Scholar] [CrossRef] [PubMed]
No. | Density (20 °C) (g/cm3) | Viscosity (20 °C) (mm2/s) | Surface Tension (20 °C) (mN/m) |
---|---|---|---|
1 | 0.9753 | 5329.19 | 21.1 |
2 | 0.975 | 4911.89 | 21.3 |
3 | 0.9744 | 3016.48 | 20.9 |
4 | 0.9743 | 4647.46 | 21.2 |
5 | 0.9743 | 4099.09 | 21 |
6 | 0.9742 | 3917.14 | 21.2 |
7 | 0.9726 | 2899.52 | 21.1 |
8 | 0.972 | 2196.92 | 21 |
9 | 0.9718 | 2582.13 | 21.2 |
10 | 0.9718 | 1660.54 | 21.1 |
11 | 0.9718 | 3597.43 | 21.1 |
12 | 0.9716 | 3362.21 | 21.1 |
13 | 0.9703 | 1504.6 | 21 |
14 | 0.9703 | 1413.78 | 20.8 |
15 | 0.9695 | 1283.54 | 20.7 |
16 | 0.9643 | 1063.51 | 20.6 |
17 | 0.9641 | 849.6 | 20.6 |
18 | 0.9611 | 1184.14 | 29.9 |
19 | 0.9607 | 659.85 | 20.7 |
20 | 0.9601 | 3109.89 | 21.2 |
21 | 0.956 | 2384.32 | 22.3 |
22 | 0.9541 | 439.19 | 20.2 |
23 | 0.954 | 394.78 | 20.5 |
24 | 0.95 | 396.55 | 29.3 |
25 | 0.9467 | 159.45 | 20 |
26 | 0.9434 | 190.99 | 26.9 |
27 | 0.9418 | 99.26 | 19.8 |
28 | 0.941 | 47.63 | 19.5 |
29 | 0.94 | 11.57 | 19.7 |
30 | 0.9312 | 721.03 | 27.1 |
31 | 0.9247 | 547.49 | 25.2 |
32 | 0.9183 | 81.86 | 25.5 |
33 | 0.9152 | 91.87 | 30.7 |
34 | 0.8907 | 28.47 | 25.7 |
35 | 0.8755 | 17.99 | 25.7 |
36 | 0.8652 | 12.12 | 26 |
37 | 0.861 | 9.84 | 23.1 |
38 | 0.8543 | 9.2 | 23.5 |
39 | 0.8508 | 7.83 | 23.0 |
40 | 0.8373 | 5.29 | 24.3 |
41 | 0.9742 | 425.63 | 21.1 |
42 | 0.8620 | 10.62 | 23.2 |
43 | 0.9481 | 400.00 | 25.6 |
44 | 0.9423 | 688.53 | 20.5 |
45 | 0.9705 | 1621.53 | 21.2 |
Experiment | RPM | Temperature (°C) | Salinity | Oil Type (No.) |
---|---|---|---|---|
Effect of temperature on the oil dispersion | 600 | 10, 15, 20, 25, 30 | 20‰ | 18, 19, 32, 40 |
Effect of salinity on the oil dispersion | 600 | 20 | 20‰ | 18, 19, 32, 40 |
Effect of mixing energy on the oil dispersion | 100, 200, 300, 400, 450, 500, 550, 600, 650, 700, 750, 800 | 20 | 20‰ | 18, 19, 32, 40 |
Effect of oil type on the oil dispersion | 600 | 20 | 20‰ | 1~40 |
Density | Viscosity | Surface Tension | |
---|---|---|---|
Partial correlation coefficient (PCE) | −0.801 | −0.812 | −0.286 |
Statistical significance | 3.63 × 10−8 | 1.69 × 10−8 | 0.113 |
No. | Experimental Results (mm/min) | Calculated Results (mm/min) | Relative Error (%) |
---|---|---|---|
41 | 0.0035 | 0.0036 | 2.9 |
42 | 0.3374 | 0.3250 | 3.7 |
43 | 0.1570 | 0.1802 | 14.8 |
44 | 0.1365 | 0.1297 | 5.0 |
45 | 0.0603 | 0.0482 | 20.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Han, L.; Zhang, Y.; Jiang, A.; Wang, J.; Niu, X. Effects of Physical Properties and Environmental Conditions on the Natural Dispersion of Oil. J. Mar. Sci. Eng. 2024, 12, 47. https://doi.org/10.3390/jmse12010047
Wang C, Han L, Zhang Y, Jiang A, Wang J, Niu X. Effects of Physical Properties and Environmental Conditions on the Natural Dispersion of Oil. Journal of Marine Science and Engineering. 2024; 12(1):47. https://doi.org/10.3390/jmse12010047
Chicago/Turabian StyleWang, Chenfang, Longxi Han, Yi Zhang, Anqi Jiang, Jie Wang, and Xiangming Niu. 2024. "Effects of Physical Properties and Environmental Conditions on the Natural Dispersion of Oil" Journal of Marine Science and Engineering 12, no. 1: 47. https://doi.org/10.3390/jmse12010047
APA StyleWang, C., Han, L., Zhang, Y., Jiang, A., Wang, J., & Niu, X. (2024). Effects of Physical Properties and Environmental Conditions on the Natural Dispersion of Oil. Journal of Marine Science and Engineering, 12(1), 47. https://doi.org/10.3390/jmse12010047