Late Holocene Climate Warming Events and Their Linkage to Hydraulic Engineering on the Coast of Hangzhou Bay, East China
Abstract
:1. Introduction
2. Geographic Setting of the Study Area
3. Materials and Methods
4. Results
4.1. Major Hydraulic Engineering along the Coast of Inner Hangzhou Bay in Historical Periods
4.2. Stratigraphic and Geochemical Changes in Profile T1312S at the Dahutou Site
4.3. Stratigraphic and Geochemical Changes in Profile T1718N at the Tiaotou Site
4.4. Stratigraphy and Alkaline Earth Metal Variations in Core ZK04
5. Discussion
5.1. Changes in the Hydrological Environment Recorded in Profile T1312S and Core ZK04
5.2. Climate Change Recorded in Profile T1718N
5.3. Response of Hydraulic Engineering to Changes in Climate and Hydrological Environment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caballero, M.; Ortega, B.; Valadez, F.; Metcalfe, S.; Macias, J.L.; Sugiura, Y. Sta. Cruz Atizapán: A 22-ka lake level record and climatic implications for the late Holocene human occupation in the Upper Lerma Basin, Central Mexico. Palaeogeogr. Palaeoclim. Palaeoecol. 2002, 186, 217–235. [Google Scholar] [CrossRef]
- Wanner, H.; Beer, J.; Bütikofer, J.; Crowley, T.J.; Cubasch, U.; Flückiger, J.; Goosse, H.; Grosjean, M.; Joos, F.; Kaplan, J.O.; et al. Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev. 2008, 27, 1791–1828. [Google Scholar] [CrossRef]
- Wang, T.; Surge, D.; Mithen, S. Seasonal temperature variability of the Neoglacial (3300–2500BP) and Roman Warm Period (2500–1600BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeogr. Palaeoclim. Palaeoecol. 2012, 317–318, 104–113. [Google Scholar] [CrossRef]
- Biagetti, S.; Merlo, S.; Adam, E.; Lobo, A.; Conesa, F.C.; Knight, J.; Bekrani, H.; Crema, E.R.; Alcaina-Mateos, J.; Madella, M. High and Medium Resolution Satellite Imagery to Evaluate Late Holocene Human–Environment Interactions in Arid Lands: A Case Study from the Central Sahara. Remote. Sens. 2017, 9, 351. [Google Scholar] [CrossRef]
- Thompson, L.G. Ice core evidence for climate change in the Tropics: Implications for our future. Quat. Sci. Rev. 2000, 19, 19–35. [Google Scholar] [CrossRef]
- Hu, C.; Henderson, G.M.; Huang, J.; Xie, S.; Sun, Y.; Johnson, K.R. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 2008, 266, 221–232. [Google Scholar] [CrossRef]
- Ols, C.; Girardin, M.P.; Hofgaard, A.; Bergeron, Y.; Drobyshev, I. Monitoring Climate Sensitivity Shifts in Tree-Rings of Eastern Boreal North America Using Model-Data Comparison: Shifts in Tree Growth Sensivity to Climate. Ecosystems 2017, 21, 1042–1057. [Google Scholar] [CrossRef]
- Qiang, M.; Jin, Y.; Liu, X.; Song, L.; Li, H.; Li, F.; Chen, F. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications. Quat. Sci. Rev. 2016, 132, 57–73. [Google Scholar] [CrossRef]
- Ge, Q.; Zheng, J.; Fang, X.; Man, Z.; Zhang, X.; Zhang, P.; Wang, W.-C. Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years. Holocene 2003, 13, 933–940. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, W.-C.; Ge, Q.; Man, Z.; Zhang, P. Precipitation variability and extreme events in Eastern China during the past 1500 years. Terr. Atmospheric Ocean. Sci. 2006, 17, 579–592. [Google Scholar] [CrossRef]
- Zhu, K. A preliminary study of climate change in China over the past 5000 years. Acta Archaeol. Sinica. 1972, 1, 15–38. (In Chinese) [Google Scholar]
- Lamb, H.H. Climate: Present, Past and Future. Volume 2: Climatic History and the Future; Routledge: London, UK, 1977; p. 837. [Google Scholar]
- Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; Demenocal, P.; Priore, P.; Cullen, H.; Hajdas, I.; Bonani, G. A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Yamada, K.; Kamite, M.; Saito-Kato, M.; Okuno, M.; Shinozuka, Y.; Yasuda, Y. Late Holocene monsoonal-climate change inferred from Lakes Ni-no-Megata and San-no-Megata, northeastern Japan. Quat. Int. 2010, 220, 122–132. [Google Scholar] [CrossRef]
- Ge, Q.; Liu, J.; Fang, X.; Yang, B.; Hao, Z.; Shao, X.; Zheng, J. General characteristics of temperature change and centennial warm periods during the past 2000 years. Acta Geogr. Sin. 2013, 68, 579–592. (In Chinese) [Google Scholar]
- Shao, S.; Wu, D.; Wang, T.; Yuan, Z.; Li, Y.; Feng, X.; Zhou, A. Late Holocene hydrological variations recorded by sediments from Lake Gongka in the Hengduan Mountains and their linkage with the India summer monsoon. J. Lake Sci. 2023, 35, 1126–1138. (In Chinese) [Google Scholar]
- Currás, A.; Zamora, L.; Reed, J.; García-Soto, E.; Ferrero, S.; Armengol, X.; Mezquita-Joanes, F.; Marqués, M.; Riera, S.; Julià, R. Climate change and human impact in central Spain during Roman times: High-resolution multi-proxy analysis of a tufa lake record (Somolinos, 1280 m asl). CATENA 2012, 89, 31–53. [Google Scholar] [CrossRef]
- Silva-Sánchez, N.; Cortizas, A.M.; Abel-Schaad, D.; López-Sáez, J.; Mighall, T. Influence of climate change and human activities on the organic and inorganic composition of peat during the ‘Little Ice Age’ (El Payo mire, W Spain). Holocene 2016, 26, 1290–1303. [Google Scholar] [CrossRef]
- Yao, H. Outline of Chinese Water Conservancy History; China Water and Power Press: Beijing, China, 1987; p. 599. (In Chinese) [Google Scholar]
- Chen, J. Seawalls–Coastal Changes and Seawall Engineering in China; People’s Publishing House: Beijing, China, 2000; p. 161. (In Chinese) [Google Scholar]
- Shang, Y.; Park, H.-D.; Yang, Z.; Chen, S.; Lin, D. Deposition rate and interaction of human-riverine from height increase and permanent function of an 1180 years weir in Southeast China. Sci. China Earth Sci. 2014, 57, 323–336. [Google Scholar] [CrossRef]
- Dalton, M.; Spencer, N.; Macklin, M.G.; Woodward, J.C.; Ryan, P. Three thousand years of river channel engineering in the Nile Valley. Geoarchaeology 2023, 38, 565–587. [Google Scholar] [CrossRef]
- Liu, B.; Wang, N.; Chen, M.; Zhuang, Y. Earliest hydraulic enterprise in China 5100 years ago. Proc. Natl. Acad. Sci. USA 2017, 114, 13637–13642. [Google Scholar] [CrossRef]
- Wang, J. The Jianhu Lake System and the Civilization of Yue; People’s Publishing House: Beijing, China, 2008; p. 288. (In Chinese) [Google Scholar]
- Qiu, Z.; Chen, P. History of the Eastern Zhejiang Canal; Chinese Literature and History Press: Beijing, China, 2014; p. 491. (In Chinese) [Google Scholar]
- Zhao, Y. Cultures of the South Lake at Yuhang; Oriental Museum: Chicago, IL, USA, 2007; pp. 20–29. (In Chinese) [Google Scholar]
- Wu, W. Several geographical changes in Hangzhou. Hist. Geogr. 1987, 1, 176–184. (In Chinese) [Google Scholar]
- Zhejiang Provincial Institute of Cultural Relics and Archaeology. A Comprehensive Study of Liangzhu Ancient City; Cultural Relics Press: Beijing, China, 2019; p. 482. (In Chinese) [Google Scholar]
- Wang, G.; Zhou, C.; Zhang, Z. Main hydrological characteristics of the tidal zone of the Qiantang River. Hydrology 1982, 04, 55–57. (In Chinese) [Google Scholar]
- Shangyu County Records Compilation Committee. Shangyu County Records; Zhejiang People’s Publishing House: Hangzhou, China, 1990; p. 875. (In Chinese) [Google Scholar]
- Qian, N.; Xie, H.; Zhou, Z.; Li, G. Recent processes in the mouth shoal of the Qiantang River estuary. Acta Geogr. Sin. 1964, 30, 124–142. (In Chinese) [Google Scholar]
- Chen, J.; Luo, Z.; Chen, D.; Xu, H.; Qiao, P. Formation of mouth shoal and its historical evolution in the estuary of the Qiantang River. Acta Geogr. Sin. 1964, 30, 109–123. (In Chinese) [Google Scholar]
- Xie, Y. The Effects of Regulation and Reclamation in Qiantang Estuary on Storm Surge at Hangzhou Bay; Ocean University of China: Qingdao, China, 2006. (In Chinese) [Google Scholar]
- Wang, S.; Ge, J.; Kilbourne, K.H.; Wang, Z. Numerical simulation of mid-Holocene tidal regime and storm-tide inundation in the south Yangtze coastal plain, East China. Mar. Geol. 2020, 423, 106134. [Google Scholar] [CrossRef]
- He, Z.; Yu, Z.; Shi, H.; Li, Z.; Li, L. Study on the impact mechanism of Typhoon Canhong on the hydrodynamic characteristics of Hangzhou Bay. In Ocean Engineering Society. Proceedings of the Twentieth China Ocean (Shore) Engineering Symposium (II); Hohai University Press: Nanjing, China, 2022; pp. 397–402. (In Chinese) [Google Scholar]
- Li, X.; Lin, S.; Wang, Z. The sedimentary stratigraphic records of copper casting activities during the Late Shang—Early Western Zhou periods at the Tiaotou site in Yuhang, Zhejiang Province. Quat. Sci. 2024, 44, 128–143. [Google Scholar]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal 20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Durcan, J.A.; King, G.E.; Duller, G.A. DRAC: Dose rate and age calculator for trapped charge dating. Quat. Geochronol. 2015, 28, 54–61. [Google Scholar] [CrossRef]
- Galbraith, R.; Roberts, R. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quat. Geochronol. 2012, 11, 1–27. [Google Scholar] [CrossRef]
- Murray, A.; Wintle, A. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Cui, M.; Wang, Z.; Rao, K.N.; Sangode, S.J.; Saito, Y.; Chen, T.; Kulkarni, Y.R.; Kumar, K.C.V.N.; Demudu, G. A mid- to late-Holocene record of vegetation decline and erosion triggered by monsoon weakening and human adaptations in the south-east Indian Peninsula. Holocene 2017, 27, 1976–1987. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Z.; Liu, J.; Xu, N.; Li, H. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta. Chem. Geol. 2021, 559, 119923. [Google Scholar] [CrossRef]
- Huang, J.; Lei, S.; Tang, L.; Wang, A.; Wang, Z. Mid-Holocene environmental change and human response at the Neolithic Wuguishan site in the Ningbo coastal lowland of East China. Holocene 2020, 30, 1591–1605. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Et Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Harnois, L. The CIW index: A new chemical index of weathering. Sediment. Geol. 1988, 55, 319–322. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and Global Denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Feng, L.; Chu, X.; Zhang, Q.; Zhang, T. CIA (Chemical Index of Alteration) and its applications in the Neoproterozoic clastic rocks. Earth Sci. Front. 2003, 10, 539–544. (In Chinese) [Google Scholar]
- Nesbitt, H.; Markovics, G.; Price, R. Chemical Processes affecting alkalis and alkaline earths during continental weathering. Geochim. Et Cosmochim. Acta 1980, 44, 1659–1666. [Google Scholar] [CrossRef]
- Wang, G. Literature Integration about Qiantang River, Hangzhou Manual (Volume II: Historical Materials of Qiantang River Seawalls II); Hangzhou Publishing House: Hangzhou, China, 2014; p. 133. (In Chinese) [Google Scholar]
- Chen, Q. The ancient Lake Jianhu with spatial regard to its role in the agriculture of the Shanhui Plain. Acta Geogr. Sin. 1962, 28, 187–202. (In Chinese) [Google Scholar]
- Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 2010, 5, 512–518. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Ding, F.; Zheng, T.; Meadows, M.E.; Wang, Z. Sedimentary records of mid-Holocene coastal flooding at a Neolithic site on the southeast plain of Hangzhou Bay, east China. Mar. Geol. 2021, 431, 106380. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, T.; Wang, Z.; Meadows, M.E. Reconstruction of coastal flooding processes and human response at the end of the Liangzhu Culture, East China. Quat. Sci. Rev. 2022, 293, 107705. [Google Scholar] [CrossRef]
- Meyers, P.A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 1994, 114, 289–302. [Google Scholar] [CrossRef]
- Lamb, A.L.; Wilson, G.P.; Leng, M.J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci. Rev. 2006, 75, 29–57. [Google Scholar] [CrossRef]
- Coffey, M.; Dehairs, F.; Collette, O.; Luther, G.; Church, T.; Jickells, T. The behaviour of dissolved barium in estuaries. Estuarine Coast. Shelf Sci. 1997, 45, 113–121. [Google Scholar] [CrossRef]
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Wilson, G.P.; Lamb, A.L.; Leng, M.J.; Gonzalez, S.; Huddart, D. Variability of organic δ13C and C/N in the Mersey Estuary, U.K. and its implications for sea-level reconstruction studies. Estuar. Coast. Shelf Sci. 2005, 64, 685–698. [Google Scholar] [CrossRef]
- Chen, T.; Ryves, D.B.; Wang, Z.; Lewis, J.P.; Yu, X. Mid- to late Holocene morphological and hydrological changes in the south Taihu area of the Yangtze delta plain, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 498, 127–142. [Google Scholar] [CrossRef]
- Moberg, A.; Sonechkin, D.M.; Holmgren, K.; Datsenko, N.M.; Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 2005, 433, 613–617. [Google Scholar] [CrossRef]
- Büntgen, U.; Tegel, W.; Nicolussi, K.; McCormick, M.; Frank, D.; Trouet, V.; Kaplan, J.o.; Herzig, F.; Heussner, K.-U.; Wanner, H.; et al. 2500 years of European climate variability and human susceptibility. Science 2011, 331, 578–582. [Google Scholar] [CrossRef]
- Ljungqvist, F.C. A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geogr. Ann. Ser. A Phys. Geogr. 2010, 92, 339–351. [Google Scholar] [CrossRef]
- Ge, Q.; Zheng, J.; Fang, X.; Man, Z.; Zhang, X.; Zhang, P.; Wang, W. Temperature changes of winter-half-year in Eastern China during the past 2000 years. Quat. Sci. 2002, 22, 166–173. (In Chinese) [Google Scholar]
- Ge, Q.; Zheng, J.; Hao, Z.; Liu, H. General characteristics of climate changes during the past 2000 years in China. Sci. China Earth Sci. 2012, 42, 934–942. [Google Scholar] [CrossRef]
- Wang, S. Dark Ages Cold Period. Adv. Clim. Change Res. 2011, 7, 233–234. (In Chinese) [Google Scholar]
- Yao, T.; Thompson, L. Trends and features of climatic changes in the past 5000 years recorded by the Dunde ice core. Ann. Glaciol. 1992, 16, 21–24. [Google Scholar]
- Wu, Y.; Huang, X.; Zheng, X.; Meadows, M.E.; Wang, Z. Sedimentary records of mid-Holocene extreme storm events on the north bank of Hangzhou Bay, East China. Mar. Geol. 2022, 451, 106891. [Google Scholar] [CrossRef]
- Talke, S.A.; Orton, P.; Jay, D.A. Increasing storm tides in New York Harbor, 1844-2013. Geophys. Res. Lett. 2014, 41, 3149–3155. [Google Scholar] [CrossRef]
- Wang, S.; Ge, J.; Meadows, M.E.; Wang, Z. Reconstructing a late Neolithic extreme storm event on the southern Yangtze coast, East China, based on sedimentary records and numerical modeling. Mar. Geol. 2022, 443, 106687. [Google Scholar] [CrossRef]
Profile/ | Depth | Material | δ13C | Conventional Age | Calibrated Age (cal. yr BP) | Median | Laboratory | ||
---|---|---|---|---|---|---|---|---|---|
Core | (cm) | (‰) | (yr BP) | 2 Sigma | Prob. | Median | (BCE/CE) | Number | |
T1312S | 43 | Charcoal | −23.9 | 110 ± 30 | 11–267 | 1 | 110 | 1840 CE | Beta-661596 |
T1312S | 62 | Charcoal | −26.8 | 1370 ± 30 | 1266–1316 | 0.824 | 1295 | 655 CE | Beta-661597 |
T1312S | 77 | Plant | −27.0 | 2260 ± 30 | 2155–2343 | 1 | 2230 | 280 BCE | Beta-661598 |
T1312S | 97 | Charcoal | −27.6 | 2290 ± 30 | 2176–2353 | 1 | 2320 | 370 BCE | Beta-661599 |
T1718N | 34 | Charcoal | −25.9 | 820 ± 30 | 677–752 | 0.892 | 715 | 1235 CE | Beta-651145 |
T1718N | 67 | Charcoal | −26.5 | 2920 ± 30 | 2989–3163 | 0.934 | 3065 | 1115 BCE | Beta-651146 |
T1718N | 74 | Charcoal | −26.3 | 2820 ± 30 | 2848–3004 | 0.989 | 2920 | 970 BCE | Beta-667598 |
T1718N | 131 | Charcoal | −25.8 | 3310 ± 30 | 3453–3584 | 0.984 | 3525 | 1575 BCE | Beta-667599 |
ZK04 | 513 | Plant | −27.7 | 2040 ± 30 | 1923–2068 | 0.881 | 1995 | 45 BCE | Beta-526272 |
Depth (m) | U (ppm) | Th (ppm) | K (%) | Moisture Content (%) | Dose Rate (Gy/ka) | Equivalent Dose (1) (Gy) | Age (ka) | Age (cal. yr BP) | Age (BCE/CE) | Laboratory Number |
---|---|---|---|---|---|---|---|---|---|---|
10.42 | 2.46 ± 0.12 | 14.80 ± 0.74 | 1.47 ± 0.07 | 23.8 | 2.73 ± 0.09 | 6.45 | 2.36 ± 0.08 | 2290 | 340 BCE | L714 |
11.20 | 1.66 ± 0.08 | 8.61 ± 0.43 | 1.57 ± 0.08 | 20.4 | 2.31 ± 0.07 | 18.30 ± 1.46 | 7.92 ± 0.68 | 7850 | 5900 BCE | L715 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; You, X.; Lin, S.; Zhang, W.; Cheng, Z.; Wang, Z. Late Holocene Climate Warming Events and Their Linkage to Hydraulic Engineering on the Coast of Hangzhou Bay, East China. J. Mar. Sci. Eng. 2024, 12, 79. https://doi.org/10.3390/jmse12010079
Li X, You X, Lin S, Zhang W, Cheng Z, Wang Z. Late Holocene Climate Warming Events and Their Linkage to Hydraulic Engineering on the Coast of Hangzhou Bay, East China. Journal of Marine Science and Engineering. 2024; 12(1):79. https://doi.org/10.3390/jmse12010079
Chicago/Turabian StyleLi, Xunpeng, Xiaolei You, Sen Lin, Wentong Zhang, Zeen Cheng, and Zhanghua Wang. 2024. "Late Holocene Climate Warming Events and Their Linkage to Hydraulic Engineering on the Coast of Hangzhou Bay, East China" Journal of Marine Science and Engineering 12, no. 1: 79. https://doi.org/10.3390/jmse12010079
APA StyleLi, X., You, X., Lin, S., Zhang, W., Cheng, Z., & Wang, Z. (2024). Late Holocene Climate Warming Events and Their Linkage to Hydraulic Engineering on the Coast of Hangzhou Bay, East China. Journal of Marine Science and Engineering, 12(1), 79. https://doi.org/10.3390/jmse12010079