Dietary Tartaric Acid Improves Growth Performance, Gut Microbiota, Digestive Enzyme Activities, Hemolymph Immunity, Antioxidant Markers, and Disease Resistance against Vibrio parahaemolyticus in Pacific White Shrimp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet Preparation and Experimental Design
2.2. Shrimp Rearing and Growth Performance
2.3. Sampling Procedure
2.4. Analysis
2.4.1. Microbiological Determination
2.4.2. Digestive and Antioxidant Enzymes
2.4.3. Hemolymph Indices and Immunological Assays
2.4.4. Challenge Test
2.4.5. Statistical Analysis
3. Results
3.1. Growth Performance Parameters
3.2. Gut Total and Lactic Acid Bacteria
3.3. Digestive Enzyme Activity
3.4. Measuring the Response of Antioxidant Markers and MDA Content
3.5. Innate Immune Responses
3.6. Challenge Test
4. Discussion
4.1. Growth Markers, Gut LAB, and Digestive Enzyme Activities
4.2. Immune Status
4.3. Antioxidant Markers
4.4. Challenge Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Y.; Wang, Y.; Ding, X.; Xiong, D.; Zhang, J. Response of intestine microbiota, digestion, and immunity in Pacific white shrimp Litopenaeus vannamei to dietary succinate. Aquaculture 2020, 517, 734762. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Ren, J.; Zou, H.; Wang, C. Effect of dietary supplementation with sodium butyrate and tributyrin on the growth performance and intestinal microbiota of Pacific white shrimp (Litopenaeus vannamei). Aquac. Int. 2022, 30, 2477–2489. [Google Scholar] [CrossRef]
- Viana, J.T.; dos Santos Rocha, R.; Maggioni, R. Structural and functional diversity of lectins associated with immunity in the marine shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2022, 129, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Ng, T.H.; Wang, H.C. Acute hepatopancreatic necrosis disease in penaeid shrimp. Rev. Aquac. 2020, 12, 1867–1880. [Google Scholar] [CrossRef]
- Yong, A.S.K.; Mok, W.Y.; Tamrin, M.L.M.; Shapawi, R.; Kim, Y.S. Effects of dietary nucleotides on growth, survival and metabolic response in whiteleg shrimp, Litopenaeus vannamei against ammonia stress condition. Aquac. Res. 2020, 51, 2252–2260. [Google Scholar] [CrossRef]
- Mo, B.; Li, J.; Liao, G.; Wang, L.; Fan, L. Toxic effects of glyphosate on histopathology and intestinal microflora of juvenile Litopenaeus vannamei. Aquat. Toxicol. 2023, 255, 106399. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Han, F.; Huang, K.; Zhang, J.; Qin, J.G.; Chen, L.; Li, E. Impact of imidacloprid exposure on the biochemical responses, transcriptome, gut microbiota and growth performance of the Pacific white shrimp Litopenaeus vannamei. J. Hazard. Mater. 2022, 424, 127513. [Google Scholar] [CrossRef]
- Qian, D.; Xu, C.; Chen, C.; Qin, J.G.; Chen, L.; Li, E. Toxic effect of chronic waterborne copper exposure on growth, immunity, anti-oxidative capacity and gut microbiota of Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2020, 100, 445–455. [Google Scholar] [CrossRef]
- Esparza-Leal, H.M.; Ponce-Palafox, J.T.; Cervantes-Cervantes, C.M.; Valenzuela-Quiñónez, W.; Luna-González, A.; López-Álvarez, E.S.; Vázquez-Montoya, N.; López-Espinoza, M.; Gómez-Peraza, R.L. Effects of low salinity exposure on immunological, physiological and growth performance in Litopenaeus vannamei. Aquac. Res. 2019, 50, 944–950. [Google Scholar] [CrossRef]
- Duan, Y.; Xiong, D.; Wang, Y.; Zhang, Z.; Li, H.; Dong, H.; Zhang, J. Toxicological effects of microplastics in Litopenaeus vannamei as indicated by an integrated microbiome, proteomic and metabolomic approach. Sci. Total Environ. 2021, 761, 143311. [Google Scholar] [CrossRef]
- He, W.; Rahimnejad, S.; Wang, L.; Song, K.; Lu, K.; Zhang, C. Effects of organic acids and essential oils blend on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immunol. 2017, 70, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, M.; Amirtharaj, K.V.; Chrisolite, B.; Sivasankar, P.; Subash, P. Dietary organic acids on growth, immune response, hepatopancreatic histopathology and disease resistance in Pacific white shrimp, Penaeus vannamei against Vibrio harveyi. Res. Squ. 2022. [Google Scholar] [CrossRef]
- Niazi, A.; Mehrgan, M.S.; Islami, H.R. Optimizing turmeric and green tea fermentation with Lactobacillus brevis to enhance growth performance, digestive enzymes, and immunity in rainbow trout. Aquaculture 2023, 577, 739962. [Google Scholar] [CrossRef]
- Ng, W.-K.; Koh, C.-B.; Teoh, C.-Y.; Romano, N. Farm-raised tiger shrimp, Penaeus monodon, fed commercial feeds with added organic acids showed enhanced nutrient utilization, immune response and resistance to Vibrio harveyi challenge. Aquaculture 2015, 449, 69–77. [Google Scholar] [CrossRef]
- Mine, S.; Boopathy, R. Effect of organic acids on shrimp pathogen, Vibrio harveyi. Curr. Microbiol. 2011, 63, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.B.; Ranveer, R.C.; Benjakul, S.; Kim, S.K.; Pagarkar, A.U.; Patange, S.; Ozogul, F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4182–4210. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Li, X.; Leng, X.; Tan, C.; Liu, B.; Chai, X.; Guo, T. The improvement of growth, digestive enzyme activity and disease resistance of white shrimp by the dietary citric acid. Aquac. Int. 2014, 22, 1823–1835. [Google Scholar] [CrossRef]
- Chuchird, N.; Rorkwiree, P.; Rairat, T. Effect of dietary formic acid and astaxanthin on the survival and growth of Pacific white shrimp (Litopenaeus vannamei) and their resistance to Vibrio parahaemolyticus. Springer Plus 2015, 4, 1–12. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Y.; Zhang, J.; Sun, Y.; Wang, J. Dietary effects of succinic acid on the growth, digestive enzymes, immune response and resistance to ammonia stress of Litopenaeus vannamei. Fish Shellfish Immunol. 2018, 78, 10–17. [Google Scholar] [CrossRef]
- Busti, S.; Rossi, B.; Volpe, E.; Ciulli, S.; Piva, A.; D’Amico, F.; Soverini, M.; Candela, M.; Gatta, P.P.; Bonaldo, A. Effects of dietary organic acids and nature identical compounds on growth, immune parameters and gut microbiota of European sea bass. Sci. Rep. 2020, 10, 21321. [Google Scholar] [CrossRef]
- Romano, N.; Koh, C.-B.; Ng, W.K. Dietary microencapsulated organic acids blend enhances growth, phosphorus utilization, immune response, hepatopancreatic integrity and resistance against Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture 2015, 435, 228–236. [Google Scholar] [CrossRef]
- Jantwal, A.; Durgapal, S.; Upadhyay, J.; Joshi, T.; Kumar, A. Tartaric acid, Antioxidants Effects in Health; Elsevier: Amsterdam, The Netherlands, 2022; pp. 485–492. [Google Scholar]
- Yang, L.; Zhang, Z.; Hu, X.; You, L.; Khan, R.A.A.; Yu, Y. Phenolic contents, organic acids, and the antioxidant and bio activity of wild medicinal Berberis plants-as sustainable sources of functional food. Molecules 2022, 27, 2497. [Google Scholar] [CrossRef] [PubMed]
- Begum, I.; Shamim, S.; Ameen, F.; Hussain, Z.; Bhat, S.A.; Qadri, T.; Hussain, M.A. combinatorial approach towards antibacterial and antioxidant activity using tartaric acid capped silver nanoparticles. Process 2022, 10, 716. [Google Scholar] [CrossRef]
- Seethalakshmi, P.; Rajeev, R.; Kiran, G.S.; Selvin, J. Shrimp disease management for sustainable aquaculture: Innovations from nanotechnology and biotechnology. Aquac. Int. 2021, 29, 1591–1620. [Google Scholar] [CrossRef]
- Bae, J.; Hamidoghli, A.; Farris, N.W.; Olowe, O.S.; Choi, W.; Lee, S.; Won, S.; Ohh, M.; Lee, S.; Bai, S.C. Dietary γ-aminobutyric acid (GABA) promotes growth and resistance to Vibrio alginolyticus in whiteleg shrimp Litopenaeus vannamei. Aquac. Nutr. 2022, 2022, 9105068. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of Official Analytical Chemists International, 16th ed.; Association of Official Analytical Chemists: Arlington, MA, USA, 1995; pp. 16–26. [Google Scholar]
- Irani, M.; Islami, H.R.; Bahabadi, M.N.; Shekarabi, S.P.H. Production of Pacific white shrimp under different stocking density in a zero-water exchange biofloc system: Effects on water quality, zootechnical performance, and body composition. Aquac. Eng. 2023, 100, 102313. [Google Scholar] [CrossRef]
- Wang, Y.C.; Hu, S.Y.; Chiu, C.-S.; Liu, C.-H. Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, Litopenaeus vannamei, than single probiotic strains. Fish Shellfish Immunol. 2019, 84, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.-C.; Lin, T.-Y.; Chi, C.-C.; Liu, C.-H. Probiotic, Bacillus subtilis E20 alters the immunity of white shrimp, Litopenaeus vannamei via glutamine metabolism and hexosamine biosynthetic pathway. Fish Shellfish Immunol. 2020, 98, 176–185. [Google Scholar] [CrossRef]
- Yousefi, M.; Farsani, M.N.; Ghafarifarsani, H.; Raeeszadeh, M. Dietary Lactobacillus helveticus and Gum Arabic improves growth indices, digestive enzyme activities, intestinal microbiota, innate immunological parameters, antioxidant capacity, and disease resistance in common carp. Fish Shellfish Immunol. 2023, 135, 108652. [Google Scholar] [CrossRef]
- Ghaffarizadeh, A.; Sotoudeh, E.; Mozanzadeh, M.T.; Sanati, A.M.; Ghasemi, A. Supplementing dietary selenium nano-particles increased growth, antioxidant capacity and immune-related genes transcription in Pacific whiteleg shrimp (Penaeus vannamei) juveniles. Aquac. Rep. 2022, 25, 101215. [Google Scholar] [CrossRef]
- Nonwachai, T.; Purivirojkul, W.; Limsuwan, C.; Chuchird, N.; Velasco, M.; Dhar, A.K. Growth, nonspecific immune characteristics, and survival upon challenge with Vibrio harveyi in Pacific white shrimp (Litopenaeus vannamei) raised on diets containing algal meal. Fish Shellfish Immunol. 2010, 29, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, H.; Sourinejad, I.; Johari, S.A. Dietary turmeric, curcumin and nanoencapsulated curcumin can differently fight against salinity stress in Pacific white shrimp Penaeus vannamei Boone, 1931. Aquac. Res. 2022, 53, 3127–3139. [Google Scholar] [CrossRef]
- Prabawati, E.; Hu, S.Y.; Chiu, S.-T.; Balantyne, R.; Risjani, Y.; Liu, C.H. A synbiotic containing prebiotic prepared from a by-product of king oyster mushroom, Pleurotus eryngii and probiotic, Lactobacillus plantarum incorporated in diet to improve the growth performance and health status of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2022, 120, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Yanez-Lemus, F.; Moraga, R.; Smith, C.T.; Aguayo, P.; Sánchez-Alonzo, K.; García-Cancino, A.; Valenzuela, A.; Campos, V.L. Selenium nanoparticle-enriched and potential probiotic, Lactiplantibacillus plantarum S14 strain, a diet supplement beneficial for rainbow trout. Biology 2022, 11, 1523. [Google Scholar] [CrossRef] [PubMed]
- Reda, R.M.; Mahmoud, R.; Selim, K.M.; El-Araby, I.E. Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2016, 50, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Jasim, S.A.; Hafsan, H.; Saleem, H.D.; Kandeel, M.; Khudhair, F.; Yasin, G.; Iswanto, A.H.; Mohammed, H.T.; Izzat, S.E.; Dadras, M. The synergistic effects of the probiotic (Lactobacillus fermentum) and cinnamon, Cinnamomum sp. powder on growth performance, intestinal microbiota, immunity, antioxidant defence and resistance to Yersinia ruckeri infection in the rainbow trout (Oncorhynchus mykiss) under high rearing density. Aquac. Res. 2022, 53, 5957–5970. [Google Scholar]
- Rick, W.; Stegbauer, H.P. α-Amylase Measurement of Reducing Groups, Methods of Enzymatic Analysis; Elsevier: Amsterdam, The Netherlands, 1974; pp. 885–890. [Google Scholar]
- Kiran, G.S.; Priyadharshini, S.; Sajayan, A.; Ravindran, A.; Priyadharshini, G.B.; Ramesh, U.; Suarez, L.E.C.; Selvin, J. Dietary administration of gelatinised polyhydroxybutyrate to Penaeus vannamei improved growth performance and enhanced immune response against Vibrio parahaemolyticus. Aquaculture 2020, 517, 734773. [Google Scholar] [CrossRef]
- García-Carreño, F.L. Protease inhibition in theory and practice. J. Biol. Educ. 1992, 3, 145–150. [Google Scholar]
- Abdollahi-Arpanahi, D.; Soltani, E.; Jafaryan, H.; Soltani, M.; Naderi-Samani, M.; Campa-Córdova, A.I. Efficacy of two commercial and indigenous probiotics, Bacillus subtilis and Bacillus licheniformis on growth performance, immuno-physiology and resistance response of juvenile white shrimp (Litopenaeus vannamei). Aquaculture 2018, 496, 43–49. [Google Scholar] [CrossRef]
- Le Moullac, G.; Le Groumellec, M.; Ansquer, D.; Froissard, S.; Levy, P. Haematological and phenoloxidase activity changes in the shrimp Penaeus stylirostrisin relation with the moult cycle: Protection against vibriosis. Fish Shellfish Immunol. 1997, 7, 227–234. [Google Scholar] [CrossRef]
- Ellis, A. Lysozyme assays. Techniques in Fish Immunology; Stolen, J.S., Fletcher, T.C., Anderson, D.P., Kaattari, S.L., Rowley, A.F., Eds.; SOS Publications: Fair Haven, NJ, USA, 1990; pp. 101–103. [Google Scholar]
- Hernández-López, J.; Gollas-Galván, T.; Vargas-Albores, F. Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes. Comp. Biochem. Physiol. Part C Toxicol. 1996, 113, 61–66. [Google Scholar] [CrossRef]
- Hao, K.; Liu, J.-Y.; Ling, F.; Liu, X.-L.; Lu, L.; Xia, L.; Wang, G.X. Effects of dietary administration of Shewanella haliotis D4, Bacillus cereus D7 and Aeromonas bivalvium D15, single or combined, on the growth, innate immunity and disease resistance of shrimp, Litopenaeus vannamei. Aquaculture 2014, 428, 141–149. [Google Scholar] [CrossRef]
- Vogeley, J.L.; Interaminense, J.A.; Buarque, D.S.; da Silva, S.M.B.C.; Coimbra, M.R.M.; Peixoto, S.M.; Soares, R.B. Growth and immune gene expression of Litopenaeus vannamei fed Bacillus subtilis and Bacillus circulans supplemented diets and challenged with Vibrio parahaemolyticus. Aquac. Int. 2019, 27, 1451–1464. [Google Scholar] [CrossRef]
- Sha, Y.; Wang, L.; Liu, M.; Jiang, K.; Xin, F.; Wang, B. Effects of lactic acid bacteria and the corresponding supernatant on the survival, growth performance, immune response and disease resistance of Litopenaeus vannamei. Aquaculture 2016, 452, 28–36. [Google Scholar] [CrossRef]
- Hossain, M.A.; Pandey, A.; Satoh, S. Effects of organic acids on growth and phosphorus utilization in red sea bream Pagrus major. Fish Sci. 2007, 73, 1309–1317. [Google Scholar] [CrossRef]
- Hernández, A.J.; Satoh, S.; Kiron, V. Supplementation of citric acid and amino acid chelated trace elements in low-fish meal diet for rainbow trout affect growth and phosphorus utilization. J. World Aquac. Soc. 2012, 43, 688–696. [Google Scholar] [CrossRef]
- Sardar, P.; Shamna, N.; Sahu, N. Acidifiers in aquafeed as an alternate growth promoter: A short review. Anim. Nutr. Feed Technol. 2020, 20, 353–366. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Abdel-Tawwab, M.; Dawood, M.A.; Menanteau-Ledouble, S.; El-Matbouli, M. Benefits of dietary butyric acid, sodium butyrate, and their protected forms in aquafeeds: A review. Rev. Fish. Sci. Aquac. 2020, 28, 421–448. [Google Scholar] [CrossRef]
- Sotoudeh, E.; Sangari, M.; Bagheri, D.; Morammazi, S.; Torfi Mozanzadeh, M. Dietary organic acid salts mitigate plant protein induced inflammatory response and improve humoral immunity, antioxidative status and digestive enzyme activities in yellowfin seabream, Acanthopagrus latus. Aquac. Nutr. 2020, 26, 1669–1680. [Google Scholar] [CrossRef]
- Kulkarni, A.; Krishnan, S.; Anand, D.; Kokkattunivarthil Uthaman, S.; Otta, S.K.; Karunasagar, I.; Kooloth Valappil, R. Immune responses and immunoprotection in crustaceans with special reference to shrimp. Rev. Aquac. 2021, 13, 431–459. [Google Scholar] [CrossRef]
- Roy, S.; Bossier, P.; Norouzitallab, P.; Vanrompay, D. Trained immunity and perspectives for shrimp aquaculture. Rev. Aquac. 2020, 12, 2351–2370. [Google Scholar] [CrossRef]
- Coates, C.J.; Söderhäll, K. The stress–immunity axis in shellfish. J. Invertebr. Pathol. 2021, 186, 107492. [Google Scholar] [CrossRef] [PubMed]
- Yarahmadi, P.; Mirghaed, A.T.; Shekarabi, S.P.H. Zootechnical performance, immune response, and resistance to hypoxia stress and Vibrio harveyi infection in Pacific white shrimp (Litopeneaus vannamei) fed different fishmeal diets with and without addition of sodium butyrate. Aquac. Rep. 2022, 26, 101319. [Google Scholar] [CrossRef]
- Aweya, J.J.; Zheng, Z.; Zheng, X.; Yao, D.; Zhang, Y. The expanding repertoire of immune-related molecules with antimicrobial activity in penaeid shrimps: A review. Rev. Aquac. 2021, 13, 1907–1937. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Mackay, C.R. Diet, gut microbiota and immune responses. Nat. Immunol. 2011, 12, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Rafacz-Livingston, K.; Parsons, C.; Jungk, R. The effects of various organic acids on phytate phosphorus utilization in chicks. Poult. Sci. J. 2005, 84, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Liem, A.; Pesti, G.; Edwards, H., Jr. The effect of several organic acids on phytate phosphorus hydrolysis in broiler chicks. Poult. Sci. J. 2008, 87, 689–693. [Google Scholar] [CrossRef]
- Kaya, H.; Kaya, A.; Gül, M.; Çelebi, Ş.; Timurkaan, S.; Apaydin, B. Effects of supplementation of different levels of organic acids mixture to the diet on performance, egg quality parameters, serum traits and histological criteria of laying hens. Eur. Poult. Sci. 2014, 78, 1–12. [Google Scholar]
- Huang, Y.; Lou, G.; Man, Z.; Xiao, X.; Zhu, X.; Guo, Y.; Ge, R.; Liu, H.; Tong, M.; Liu, X.; et al. Dietary sodium benzoate improves growth, morphology, antioxidant capacity and resistance against Aeromonas hydrophila of Pacific white shrimp (Litopenaeus vannamei). Aquac. Rep. 2023, 33, 101778. [Google Scholar] [CrossRef]
- Trestrail, C.; Nugegoda, D.; Shimeta, J. Invertebrate responses to microplastic ingestion: Reviewing the role of the antioxidant system. Sci. Total Environ. 2020, 734, 138559. [Google Scholar] [CrossRef]
- Safari, R.; Hoseinifar, S.H.; Kavandi, M. Modulation of antioxidant defense and immune response in zebra fish (Danio rerio) using dietary sodium propionate. Fish Physiol. Biochem. 2016, 42, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
Ingredients | TA0 | TA2.5 | TA5 | TA7.5 | TA10 |
---|---|---|---|---|---|
Fishmeal a | 300 | 300 | 300 | 300 | 300 |
Soybean meal b | 200 | 200 | 200 | 200 | 200 |
Blood meal | 30 | 30 | 30 | 30 | 30 |
Wheat gluten meal | 50 | 50 | 50 | 50 | 50 |
Squid liver powder | 50 | 50 | 50 | 50 | 50 |
Wheat flour | 140 | 140 | 140 | 140 | 140 |
Corn starch | 80 | 80 | 80 | 80 | 80 |
Calcium phosphate | 25 | 25 | 25 | 25 | 25 |
Fish oil | 40 | 40 | 40 | 40 | 40 |
Vitamin premix c | 20 | 20 | 20 | 20 | 20 |
Mineral premix c | 20 | 20 | 20 | 20 | 20 |
Cholesterol d | 5 | 5 | 5 | 5 | 5 |
Lecithin | 20 | 20 | 20 | 20 | 20 |
Cellulose e | 20 | 17.5 | 15 | 12.5 | 10 |
Tartaric acid | 0 | 2.5 | 5 | 7.5 | 10 |
Composition | 1000 | 1000 | 1000 | 1000 | 1000 |
Crude protein | 41 | 40.95 | 40.90 | 40.85 | 40.85 |
Crude lipid | 8.90 | 8.85 | 8.80 | 8.75 | 8.80 |
Crude ash | 8.30 | 8.30 | 8.35 | 8.35 | 8.4 |
Moisture | 9.60 | 9.65 | 9.65 | 9.7 | 9.7 |
Treatments | |||||||
---|---|---|---|---|---|---|---|
Parameters | TA0 | TA2.5 | TA5 | TA7.5 | TA10 | OD (g) | R2 |
IW(g) | 3.22 ± 0.02 a | 3.24 ± 0.06 a | 3.26 ± 0.07 a | 3.27 ± 0.02 a | 3.31 ± 0.05 a | 0.31 | |
FW (g) | 11.50 ± 0.30 c | 12.36 ± 0.25 bc | 13.63 ± 0.60 a | 13.46 ± 0.30 a | 12.73 ± 0.25 ab | 7.08 | 0.81 |
WG (g) | 8.27 ± 0.27 d | 9.12 ± 0.21 cd | 10.36 ± 0.57 a | 10.19 ± 0.30 ab | 9.42 ± 0.21 bc | 6.22 | 0.82 |
SGR (% d−1) | 2.27 ± 0.03 c | 2.39 ± 0.02 b | 2.55 ± 0.07 a | 2.52 ± 0.04 a | 2.40 ± 0.02 b | 6.86 | 0.84 |
FCR | 1.49 ± 0.07 a | 1.36 ± 0.06 ab | 1.16 ± 0.08 c | 1.19 ± 0.05 bc | 1.29 ± 0.06 bc | 7.14 | 0.78 |
PER | 1.64 ± 0.08 c | 1.80 ± 0.09 bc | 2.11 ± 0.15 a | 2.06 ± 0.10 ab | 1.89 ± 0.08 abc | 7.05 | 0.73 |
FI | 12.40 ± 0.20 a | 12.40 ± 0.36 a | 11.96 ± 0.15 a | 12.14 ± 0.36 a | 12.39 ± 0.53 a | 0.16 | |
SR (%) | 89.16 ± 2.88 a | 92.50 ± 4.33 a | 91.66 ± 1.44 a | 94.16 ± 3.81 a | 92.50 ± 2.50 a | 0.22 |
Treatments | |||||||
---|---|---|---|---|---|---|---|
Parameters | TA0 | TA2.5 | TA5 | TA7.5 | TA10 | OD (g) | R2 |
SGC (106 cells/mL) | 3.23 ± 0.32 b | 4.06 ± 0.25 ab | 3.86 ± 0.35 ab | 4.20 ± 0.43 a | 3.73 ± 0.25 ab | 0.47 | |
HC (106 cells/mL) | 5.56 ± 0.30 b | 6.30 ± 0.43 ab | 6.60 ± 0.62 ab | 7.33 ± 0.45 a | 6.43 ± 0.51 ab | 0.57 | |
THC (106 cells/mL) | 11.46 ± 0.45 c | 13.03 ± 0.25 b | 13.33 ± 0.51 b | 14.93 ± 0.58 a | 13.26 ± 0.64 b | 7.49 | 0.71 |
LGC (106 cells/mL) | 2.66 ± 0.20 a | 2.66 ± 0.37 a | 2.86 ± 0.38 a | 3.40 ± 0.52 a | 3.10 ± 0.79 a | 0.21 | |
LYZ (U/mL) | 41.83 ± 1.75 b | 49.50 ± 1.32 a | 50.10 ± 3.15 a | 53.83 ± 1.75 a | 50.86 ± 1.48 a | 7.73 | 0.79 |
PO(U/mL) | 16.93 ± 1.77 b | 21.80 ± 1.40 a | 22.66 ± 1.38 a | 24.76 ± 1.45 a | 23.50 ± 0.60 a | 8.04 | 0.82 |
AKP (U/L) | 6.66 ± 1.20 b | 10.60 ± 0.75 a | 10.56 ± 1.07 a | 10.96 ± 0.83 a | 10.10 ± 0.85 a | 7.11 | 0.72 |
ACP(U/L) | 10.23 ± 0.77 b | 12.66 ± 0.47 a | 13.40 ± 0.81 a | 14.53 ± 0.94 a | 13.30 ± 0.91a | 7.62 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousefi, M.; Naderi Farsani, M.; Afzali-Kordmahalleh, A.; Ahani, S. Dietary Tartaric Acid Improves Growth Performance, Gut Microbiota, Digestive Enzyme Activities, Hemolymph Immunity, Antioxidant Markers, and Disease Resistance against Vibrio parahaemolyticus in Pacific White Shrimp. J. Mar. Sci. Eng. 2024, 12, 83. https://doi.org/10.3390/jmse12010083
Yousefi M, Naderi Farsani M, Afzali-Kordmahalleh A, Ahani S. Dietary Tartaric Acid Improves Growth Performance, Gut Microbiota, Digestive Enzyme Activities, Hemolymph Immunity, Antioxidant Markers, and Disease Resistance against Vibrio parahaemolyticus in Pacific White Shrimp. Journal of Marine Science and Engineering. 2024; 12(1):83. https://doi.org/10.3390/jmse12010083
Chicago/Turabian StyleYousefi, Morteza, Mehdi Naderi Farsani, Alireza Afzali-Kordmahalleh, and Sara Ahani. 2024. "Dietary Tartaric Acid Improves Growth Performance, Gut Microbiota, Digestive Enzyme Activities, Hemolymph Immunity, Antioxidant Markers, and Disease Resistance against Vibrio parahaemolyticus in Pacific White Shrimp" Journal of Marine Science and Engineering 12, no. 1: 83. https://doi.org/10.3390/jmse12010083
APA StyleYousefi, M., Naderi Farsani, M., Afzali-Kordmahalleh, A., & Ahani, S. (2024). Dietary Tartaric Acid Improves Growth Performance, Gut Microbiota, Digestive Enzyme Activities, Hemolymph Immunity, Antioxidant Markers, and Disease Resistance against Vibrio parahaemolyticus in Pacific White Shrimp. Journal of Marine Science and Engineering, 12(1), 83. https://doi.org/10.3390/jmse12010083