Two-Dimensional Prediction of Transient Cavitating Flow Around Hydrofoils Using a DeepCFD Model
Abstract
:1. Introduction
2. Computational Methods
3. DeepCFD Model
3.1. Input Data
3.2. Neural Network Architectures
4. Model Setting
4.1. Boundary Conditions and Mesh
4.2. Validation
4.3. Data Processing
5. Results and Discussion
5.1. Prediction for Different Cavity Patterns
5.2. Prediction for Transient Cavity
5.3. Prediction with Different Cavitation Model Constants
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |||
Velocity | Experimental constant | ||
Pressure | Experimental constant | ||
Saturated pressure | Source term | ||
Reference pressure | Subset of a metric space | ||
Freestream velocity | Blending function | ||
Kinetic energy | Blending function | ||
Dissipation rate | Initial nucleus diameter | ||
Greek | |||
Volume fraction | Density | ||
Eddy viscosity | Nucleation fraction | ||
CC | Condensation coefficients | CV | Evaporation coefficients |
σ | Cavitation number | ||
Subscripts | |||
i | x directions | j | y directions |
k | z directions |
References
- Callenaere, M.; Franc, J.-P.; Michel, J.-M.; Riondet, M. The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech. 2001, 444, 223–256. [Google Scholar] [CrossRef]
- Huang, B.; Wang, G. Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil. Sci. China Technol. Sci. 2011, 54, 1801–1812. [Google Scholar] [CrossRef]
- Long, Y.; Long, X.; Ji, B.; Xing, T. Verification and validation of Large Eddy Simulation of attached cavitating flow around a Clark-Y hydrofoil. Int. J. Multiph. Flow 2019, 115, 93–107. [Google Scholar] [CrossRef]
- Lin, C.; Zhao, X.; Wang, Z.; Cheng, H.; Wang, C.; Ji, B. Large eddy simulations of sheet-to-cloud cavitation transitions with special emphasis on the simultaneous existence of the re-entrant jet and shock waves. J. Turbul. 2024, 25, 157–180. [Google Scholar] [CrossRef]
- Park, S.; Yeo, H.; Hyung Rhee, S. Isothermal compressible flow solver for prediction of cavitation erosion. Eng. Appl. Comput. Fluid Mech. 2019, 13, 683–697. [Google Scholar] [CrossRef]
- Gaggero, S.; Tani, G.; Viviani, M.; Conti, F. A study on the numerical prediction of propellers cavitating tip vortex. Ocean Eng. 2014, 92, 137–161. [Google Scholar] [CrossRef]
- Yilmaz, N.; Atlar, M.; Khorasanchi, M. An improved Mesh Adaption and Refinement approach to Cavitation Simulation (MARCS) of propellers. Ocean Eng. 2019, 171, 139–150. [Google Scholar] [CrossRef]
- Viitanen, V.; Siikonen, T.; Sánchez-Caja, A. Cavitation on model-And full-scale marine propellers: Steady and transient viscous flow simulations at different Reynolds numbers. J. Mar. Sci. Eng. 2020, 8, 141. [Google Scholar] [CrossRef]
- Ng’aru, J.M.; Park, S. Computational Analysis of Cavitating Flows around a Marine Propeller Using Incompressible, Isothermal Compressible, and Fully Compressible Flow Solvers. J. Mar. Sci. Eng. 2023, 11, 2199. [Google Scholar] [CrossRef]
- Shankar, V.; Portwood, G.D.; Mohan, A.T.; Mitra, P.P.; Krishnamurthy, D.; Rackauckas, C.; Wilson, L.A.; Schmidt, D.P.; Viswanathan, V. Validation and parameterization of a novel physics-constrained neural dynamics model applied to turbulent fluid flow. Phys. Fluids 2022, 34, 115110. [Google Scholar] [CrossRef]
- Kwon, B.; Ejaz, F.; Hwang, L.K. Machine learning for heat transfer correlations. Int. Commun. Heat Mass Transf. 2020, 116, 104694. [Google Scholar] [CrossRef]
- Fonda, E.; Pandey, A.; Schumacher, J.; Sreenivasan, K.R. Deep learning in turbulent convection networks. Proc. Natl. Acad. Sci. USA 2019, 116, 8667–8672. [Google Scholar] [CrossRef] [PubMed]
- Fukami, K.; Fukagata, K.; Taira, K. Assessment of supervised machine learning methods for fluid flows. Theor. Comput. Fluid Dyn. 2020, 34, 497–519. [Google Scholar] [CrossRef]
- Ling, J.; Kurzawski, A.; Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 2016, 807, 155–166. [Google Scholar] [CrossRef]
- Lui, H.F.S.; Wolf, W.R. Construction of reduced-order models for fluid flows using deep feedforward neural networks. J. Fluid Mech. 2019, 872, 963–994. [Google Scholar] [CrossRef]
- Jeon, W.; Park, S.; Cho, S.-k. Moored motion prediction of a semi-submersible offshore platform in waves using an OpenFOAM and MoorDyn coupled solver. Int. J. Nav. Archit. Ocean Eng. 2023, 15, 100544. [Google Scholar] [CrossRef]
- Asnaghi, A.; Petit, O.; Lackmann, T. CFD with OpenSource Software. 2013. Available online: https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2013/AbolfazlAsnagi/interPhasChangeFoam_and_PANSTurbulenceModel.pdf (accessed on 21 June 2024).
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD (Hardcover), 3rd ed.; Dcw Industries: La Canada, CA, USA, 2006. [Google Scholar]
- Ghafoorian, F.; Mirmotahari, S.R.; Wan, H. Numerical study on aerodynamic performance improvement and efficiency enhancement of the savonius vertical axis wind turbine with semi-directional airfoil guide vane. Ocean Eng. 2024, 307, 118186. [Google Scholar] [CrossRef]
- Huang, H.; Sun, T.; Zhang, G.; Li, D.; Wei, H. Evaluation of a developed SST k-ω turbulence model for the prediction of turbulent slot jet impingement heat transfer. Int. J. Heat Mass Transf. 2019, 139, 700–712. [Google Scholar] [CrossRef]
- Schnerr, G.H.; Sauer, J. Physical and numerical modeling of unsteady cavitation dynamics. In Proceedings of the Fourth International Conference on Multiphase Flow, New Orleans, LA, USA, 27 May–1 June 2001; pp. 1–12. [Google Scholar]
- Guo, X.; Li, W.; Iorio, F. Convolutional Neural Networks for Steady Flow Approximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 481–490. [Google Scholar]
- Ribeiro, M.D.; Rehman, A.; Ahmed, S.; Dengel, A. DeepCFD: Efficient steady-state laminar flow approximation with deep convolutional neural networks. arXiv 2020, arXiv:2004.08826. [Google Scholar]
- Afzal, M.Z.; Capobianco, S.; Malik, M.I.; Marinai, S.; Breuel, T.M.; Dengel, A.; Liwicki, M. Deepdocclassifier: Document classification with deep Convolutional Neural Network. In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; pp. 1111–1115. [Google Scholar]
- Sekar, V.; Zhang, M.; Shu, C.; Khoo, B.C. Inverse Design of Airfoil Using a Deep Convolutional Neural Network. AIAA J. 2019, 57, 993–1003. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Ghafoorian, F.; Mirmotahari, S.R.; Eydizadeh, M.; Mehrpooya, M. A systematic investigation on the hybrid Darrieus-Savonius vertical axis wind turbine aerodynamic performance and self-starting capability improvement by installing a curtain. Next Energy 2025, 6, 100203. [Google Scholar] [CrossRef]
- Shen, Y.; Dimotakis, P. The influence of Surface Cavitation on Hydrodynamic Forces. In Proceedings of the SNAME 22nd American Towing Tank Conference, St. John’s, NF, Canada, 8–11 August 1989. [Google Scholar]
Learning Rate | Batch Size | Kernel | Filters | Batch | Weight |
---|---|---|---|---|---|
5 × 10−4 | 10 | 5 | 8, 16, 32 | Off | Off |
Grid Properties | Grid 1 | Grid 2 | Grid 3 | Grid 4 |
---|---|---|---|---|
Number of elements | 12,916 | 21,592 | 41,978 | 74,128 |
Number of inflation layers | 11 | 13 | 15 | 17 |
Maximum skewness | 3.56 | 2.53 | 2.32 | 2.61 |
66.35 | 13.77 | 4.11 | 1.24 | |
0.46 | 0.51 | 0.55 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Park, S. Two-Dimensional Prediction of Transient Cavitating Flow Around Hydrofoils Using a DeepCFD Model. J. Mar. Sci. Eng. 2024, 12, 2074. https://doi.org/10.3390/jmse12112074
Liu B, Park S. Two-Dimensional Prediction of Transient Cavitating Flow Around Hydrofoils Using a DeepCFD Model. Journal of Marine Science and Engineering. 2024; 12(11):2074. https://doi.org/10.3390/jmse12112074
Chicago/Turabian StyleLiu, Bohan, and Sunho Park. 2024. "Two-Dimensional Prediction of Transient Cavitating Flow Around Hydrofoils Using a DeepCFD Model" Journal of Marine Science and Engineering 12, no. 11: 2074. https://doi.org/10.3390/jmse12112074
APA StyleLiu, B., & Park, S. (2024). Two-Dimensional Prediction of Transient Cavitating Flow Around Hydrofoils Using a DeepCFD Model. Journal of Marine Science and Engineering, 12(11), 2074. https://doi.org/10.3390/jmse12112074