The Temperature-Dependent Monotonic Mechanical Characteristics of Marine Sand–Geomembrane Interfaces
Abstract
1. Introduction
2. Experiments
2.1. Experimental Apparatus
2.2. Materials
2.2.1. Marine Sand
2.2.2. Geomembrane
2.3. Experimental Procedure
3. Results and Analysis
3.1. The Temperature-Dependent Interfacial Mechanical Response Under Monotonic Shear Loading
3.2. The Temperature-Dependent Interface Dilation Angle Under Monotonic Shear Loading
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Liu, Q.; Zhuang, H.; Xu, C.; Chen, G. Experimental investigation of dynamic shear modulus of saturated marine coral sand. Ocean Eng. 2022, 264, 112412. [Google Scholar]
- Peng, Y.; Ding, X.; Yin, Z.-Y.; Wang, P. Micromechanical analysis of the particle corner breakage effect on pile penetration resistance and formation of breakage zones in coral sand. Ocean Eng. 2022, 259, 111859. [Google Scholar] [CrossRef]
- Shao, W.; Qin, F.; Shi, D.; Soomro, M.A. Horizontal bearing characteristic and seismic fragility analysis of CFRP composite pipe piles subject to chloride corrosion. Comput. Geotech. 2024, 166, 105977. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, D.; Randolph, M.F. Investigation of impact forces on pipeline by submarine landslide using material point method. 2017, 146, 21–28. Ocean Eng. 2017, 146, 21–28. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, X.; Zhang, Y.; Chen, Z.; Zhang, Y. Numerical simulations on seismic response of soil-pile-superstructure in coral sand. Ocean Eng. 2021, 239, 109808. [Google Scholar] [CrossRef]
- Wang, P.; Yin, Z.Y.; Hicher, P.Y.; Cui, Y.J. Micro-mechanical analysis of one-dimensional compression of clay with DEM. Int. J. Numer. Anal. Methods Geomech. 2023, 47, 2706–2724. [Google Scholar] [CrossRef]
- Rowe, R.K.; Fan, J. A general solution for leakage through geomembrane defects overlain by saturated tailings and underlain by highly permeable subgrade. Geotext. Geomembr. 2022, 50, 694–707. [Google Scholar] [CrossRef]
- Rowe, R.K.; Fan, J. Effect of geomembrane hole geometry on leakage overlain by saturated tailings. Geotext. Geomembr. 2021, 49, 1506–1518. [Google Scholar] [CrossRef]
- Zhou, B.; Ku, Q.; Li, C.; Wang, H.; Dong, Y.; Cheng, Z. Single-particle crushing behaviour of carbonate sands studied by X-ray microtomography and a combined finite–discrete element method. Acta Geotech. 2022, 17, 3195–3209. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, W.; Zheng, J.; Cappietti, L.; Zhang, J.; Zheng, Y.; Fernandez-Rodriguez, E. The influence of waves propagating with the current on the wake of a tidal stream turbine. Appl. Energy 2021, 290, 116729. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zheng, J.; Zheng, Y.; Zhang, J.; Liu, Z.; Fernandez-Rodriguez, E. Research of the array spacing effect on wake interaction of tidal stream turbines. Ocean Eng. 2023, 276, 114227. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, T.; Ren, G.; Zhu, Z.; Gao, Y.; Shi, M.; Ding, S.; Fan, H. Reusing waste coal gangue to improve the dispersivity and mechanical properties of dispersive soil. J. Clean. Prod. 2023, 404, 136993. [Google Scholar] [CrossRef]
- Zhao, G.; Zhu, Z.; Ren, G.; Wu, T.; Ju, P.; Ding, S.; Shi, M.; Fan, H. Utilization of recycled concrete powder in modification of the dispersive soil: A potential way to improve the engineering properties. Constr. Build. Mater. 2023, 389, 131626. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, H.; Zhang, K.; Feng, G.; Zhang, Q.; Zhao, Y. Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths. Int. J. Min. Sci. Technol. 2024, 34, 117–136. [Google Scholar] [CrossRef]
- Zheng, Z.; Deng, B.; Li, S.; Zheng, H. Disturbance mechanical behaviors and anisotropic fracturing mechanisms of rock under novel three-stage true triaxial static-dynamic coupling loading. Rock Mech. Rock Eng. 2024, 57, 2445–2468. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, J.; Feng, S.-J. The era of low-permeability sites remediation and corresponding technologies: A review. Chemosphere 2023, 313, 137264. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.; Shi, D.; Zheng, J. Experimental research on temperature–Dependent dynamic interface interaction between marine coral sand and polymer layer. Ocean Eng. 2024, 297, 117100. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Shi, D.; Shen, Z.; Zhao, S.; Guo, C. Determination of Safety Monitoring Indices for Roller-Compacted Concrete Dams Considering Seepage–Stress Coupling Effects. Mathematics 2023, 11, 3224. [Google Scholar] [CrossRef]
- Chen, W.-B.; Xu, T.; Zhou, W.-H. Microanalysis of smooth Geomembrane–Sand interface using FDM–DEM coupling simulation. Geotext. Geomembr. 2021, 49, 276–288. [Google Scholar] [CrossRef]
- Ari, A.; Akbulut, S. Evaluation of sand-geomembrane interface behavior using discrete element method. Granul. Matter 2022, 24, 1–21. [Google Scholar] [CrossRef]
- Anjana, R.; Keerthana, S.; Arnepalli, D.N. Coupled effect of UV ageing and temperature on the diffusive transport of aqueous, vapour and gaseous phase organic contaminants through HDPE geomembrane. Geotext. Geomembr. 2023, 51, 316–329. [Google Scholar] [CrossRef]
- Francey, W.; Rowe, R.K. Importance of thickness reduction and squeeze-out Std-OIT loss for HDPE geomembrane fusion seams. Geotext. Geomembr. 2023, 51, 30–42. [Google Scholar] [CrossRef]
- Bilgin, Ö.; Stewart, H.E.; O’rourke, T.D. Thermal and mechanical properties of polyethylene pipes. J. Mater. Civ. Eng. 2007, 19, 1043–1052. [Google Scholar] [CrossRef]
- Chao, Z.; Wang, H.; Hu, S.; Wang, M.; Xu, S.; Zhang, W. Permeability and porosity of light-weight concrete with plastic waste aggregate: Experimental study and machine learning modelling. Constr. Build. Mater. 2024, 411, 134465. [Google Scholar] [CrossRef]
- Ren, P.; Chen, Z.-L.; Li, L.; Gong, W.; Li, J. Dynamic shakedown behaviors of flexible pavement overlying saturated ground under moving traffic load considering effect of pavement roughness. Comput. Geotech. 2024, 168, 106134. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, H.; Liang, F.; Li, L. Numerical investigation on lateral monotonic and cyclic responses of scoured rigid monopile based on an integrated bounding surface model. Comput. Geotech. 2024, 166, 105997. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, D.; Huang, H.; Huang, Q. A phase-field-based multi-physics coupling numerical method and its application in soil–water inrush accident of shield tunnel. Tunn. Undergr. Space Technol. 2023, 140, 105233. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, M.; Shen, W.; Huang, H.; He, J. Fluid-solid-phase multi-field coupling modeling method for hydraulic fracture of saturated brittle porous materials. Eng. Fract. Mech. 2023, 286, 109231. [Google Scholar] [CrossRef]
- Xu, J.; Gong, J.; Li, Y.; Fu, Z.; Wang, L. Surf-riding and broaching prediction of ship sailing in regular waves by LSTM based on the data of ship motion and encounter wave. Ocean Eng. 2024, 297, 117010. [Google Scholar] [CrossRef]
- Lin, H.; Gong, X.; Zeng, Y.; Zhou, C. Experimental study on the effect of temperature on HDPE geomembrane/geotextile interface shear characteristics. Geotext. Geomembr. 2024, 52, 396–407. [Google Scholar] [CrossRef]
- Samea, A.; Abdelaal, F. Effect of elevated temperatures on the degradation behaviour of elastomeric bituminous geomembranes. Geotext. Geomembr. 2023, 51, 219–232. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Wang, S.; Evans, T.M.; Stuedlein, A.W.; Chu, J.; Zhao, C.; Wu, H.; Liu, H. Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method. Acta Geotech. 2021, 16, 1417–1427. [Google Scholar] [CrossRef]
- Cui, J.; Jin, Y.; Jing, Y.; Lu, Y. Elastoplastic Solution of Cylindrical Cavity Expansion in Unsaturated Offshore Island Soil Considering Anisotropy. J. Mar. Sci. Eng. 2024, 12, 308. [Google Scholar] [CrossRef]
- Zhang, X.; Zhai, E.; Wu, Y.; Sun, D.a.; Lu, Y. Theoretical and numerical analyses on hydro–thermal–salt–mechanical interaction of unsaturated salinized soil subjected to typical unidirectional freezing process. Int. J. Geomech. 2021, 21, 04021104. [Google Scholar] [CrossRef]
- He, S.-H.; Shan, H.-F.; Xia, T.-D.; Liu, Z.-J.; Ding, Z.; Xia, F. The effect of temperature on the drained shear behavior of calcareous sand. Acta Geotech. 2021, 16, 613–633. [Google Scholar] [CrossRef]
- Shu, Z.; You, R.; Xie, Y. Viscoelastic Dampers for Vibration Control of Building Structures: A State-of-Art Review. J. Earthq. Eng. 2024, 28, 3558–3585. [Google Scholar] [CrossRef]
- Li, T.; Zhu, Z.; Wu, T.; Ren, G.; Zhao, G. A potential way for improving the dispersivity and mechanical properties of dispersive soil using calcined coal gangue. J. Mater. Res. Technol. 2024, 29, 3049–3062. [Google Scholar] [CrossRef]
- Rotta Loria, A.; Coulibaly, J. Thermally induced deformation of soils: A critical overview of phenomena, challenges and opportunities. Geomech. Energy Environ. 2020, 25, 100193. [Google Scholar] [CrossRef]
- Bilgin, Ö.; Shah, B. Temperature influence on high-density polyethylene geomembrane and soil interface shear strength. Int. J. Geosynth. Ground Eng. 2021, 7, 1–10. [Google Scholar] [CrossRef]
- Dong, Y.; Liao, Z.; Wang, J.; Liu, Q.; Cui, L. Potential failure patterns of a large landslide complex in the Three Gorges Reservoir area. Bull. Eng. Geol. Environ. 2023, 82, 41. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Z.; Zhu, T.; Wang, L.; Du, J.; Wang, K.; Xu, C. Fabric-Enhanced Vascular Graft with Hierarchical Structure for Promoting the Regeneration of Vascular Tissue. Adv. Healthc. Mater. 2024, 13, 2302676. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Xu, L. Challenges and Opportunities of Maritime Transport in the Post-Epidemic Era. J. Mar. Sci. Eng. 2024, 12, 1685. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.; Xiong, W. A machine learning-based strategy for experimentally estimating force chains of granular materials using X-ray micro-tomography. Géotechnique 2024, 74, 1291–1303. [Google Scholar] [CrossRef]
- Chao, Z.; Dang, Y.; Pan, Y.; Wang, F.; Wang, M.; Zhang, J.; Yang, C. Prediction of the shale gas permeability: A data mining approach. Geomech. Energy Environ. 2023, 33, 100435. [Google Scholar] [CrossRef]
- Karademir, T.; Frost, J.D. Micro-scale tensile properties of single geotextile polypropylene filaments at elevated temperatures. Geotext. Geomembr. 2014, 42, 201–213. [Google Scholar] [CrossRef]
- Karademir, T.; Frost, J.D. Elevated temperature effects on geotextile–geomembrane interface shear behavior. J. Geotech. Geoenviron. Eng. 2021, 147, 04021148. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Wu, J.; Fu, H.; Dian, L. Tunnel stability analysis of coral reef limestone stratum in ocean engineering. Ocean Eng. 2022, 265, 112636. [Google Scholar] [CrossRef]
- Wang, P.; Xu, C.; Yin, Z.-Y.; Song, S.-x.; Xu, C.; Dai, S. A DEM-based Generic Modeling Framework for Hydrate-Bearing Sediments. Comput. Geotech. 2024, 171, 106287. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Liu, Z.; Kang, Y.; Chen, T.; Xu, C.; Zhu, T. Durable Immunomodulatory Nanofiber Niche for the Functional Remodeling of Cardiovascular Tissue. ACS Nano 2024, 18, 951–971. [Google Scholar] [CrossRef]
- Ceccato, F.; Yerro, A.; Girardi, V.; Simonini, P. Two-phase dynamic MPM formulation for unsaturated soil. Comput. Geotech. 2021, 129, 103876. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.; Ling, X.; Gong, W.; Li, G.; Su, L. Dynamic behavior of natural sand soils and fiber reinforced soils in heavy-haul railway embankment under multistage cyclic loading. Transp. Geotech. 2021, 28, 100507. [Google Scholar] [CrossRef]
- Mahigir, A.; Ardakani, A.; Hassanlourad, M. Comparison between monotonic, cyclic and post-cyclic pullout behavior of a PET geogrid embedded in clean sand and clayey sand. Int. J. Geosynth. Ground Eng. 2021, 7, 1–15. [Google Scholar] [CrossRef]
- Cardile, G.; Pisano, M.; Moraci, N. The influence of a cyclic loading history on soil-geogrid interaction under pullout condition. Geotext. Geomembr. 2019, 47, 552–565. [Google Scholar] [CrossRef]
- Samanta, M.; Bhowmik, R.; Khanderi, H. Laboratory evaluation of dynamic shear response of sand–geomembrane interface. Geosynth. Int. 2022, 29, 99–112. [Google Scholar] [CrossRef]
- Zeng, W.-x.; Ying, M.-j.; Liu, F.-y. Investigation on the cyclic shear response of stereoscopic geogrid-reinforced coarse-grained soil interface. Transp. Geotech. 2023, 38, 100905. [Google Scholar] [CrossRef]
- Chao, Z.; Wang, H.; Zheng, J.; Shi, D.; Li, C.; Ding, G.; Feng, X. Temperature-Dependent Post-Cyclic Mechanical Characteristics of Interfaces between Geogrid and Marine Reef Sand: Experimental Research and Machine Learning Modeling. J. Mar. Sci. Eng. 2024, 12, 1262. [Google Scholar] [CrossRef]
- Wang, J.; Liu, F.; Wang, P.; Cai, Y. Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests. Geotext. Geomembr. 2016, 44, 854–861. [Google Scholar] [CrossRef]
- Ying, M.; Liu, F.; Wang, J.; Wang, C.; Li, M. Coupling effects of particle shape and cyclic shear history on shear properties of coarse-grained soil–geogrid interface. Transp. Geotech. 2021, 27, 100504. [Google Scholar] [CrossRef]
- Chao, Z.; Wang, H.; Hu, H.; Ding, T.; Zhang, Y. Predicting the temperature-dependent long-term creep mechanical response of silica sand-textured geomembrane interfaces based on physical tests and machine learning techniques. Materials 2023, 16, 6144. [Google Scholar] [CrossRef]
- Chao, Z.; Yang, C.; Zhang, W.; Zhang, Y.; Zhou, J. Predicting the Gas Permeability of Sustainable Cement Mortar Containing Internal Cracks by Combining Physical Experiments and Hybrid Ensemble Artificial Intelligence Algorithms. Materials 2023, 16, 5330. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.; Fowmes, G.; Mousa, A.; Zhou, J.; Zhao, Z.; Zheng, J.; Shi, D. A new large-scale shear apparatus for testing geosynthetics-soil interfaces incorporating thermal condition. Geotext. Geomembr. 2024, 52, 999–1010. [Google Scholar] [CrossRef]
- El Naggar, H.; Zahran, K.; Moussa, A. Effect of the particle size on the TDA shear strength and stiffness parameters in large-scale direct shear tests. Geotechnics 2021, 1, 1–17. [Google Scholar] [CrossRef]
- Howard, A.K. The revised ASTM standard on the unified classification system. Geotech. Test. J. 1984, 7, 216–222. [Google Scholar] [CrossRef]
- Kalasin, T.; Khamchan, C.; Aoddej, A. Effects of particle size and soil bed on the shear strength of materials in the direct shear test. Period. Polytech. Civ. Eng. 2023, 67, 166–176. [Google Scholar] [CrossRef]
- Altun, S.; Göktepe, B.; Sezer, A. Relationships between shape characteristics and shear strength of sands. Soils Found. 2011, 51, 857–871. [Google Scholar] [CrossRef]
- Daghistani, F.; Abuel-Naga, H. Evaluating the influence of sand particle morphology on shear strength: A comparison of experimental and machine learning approaches. Appl. Sci. 2023, 13, 8160. [Google Scholar] [CrossRef]
- Viggiani, G.; Küntz, M.; Desrues, J. An experimental investigation of the relationships between grain size distribution and shear banding in sand. Contin. Discontinuous Model. Cohesive-Frict. Mater. 2001, 568, 111–127. [Google Scholar]
- Chao, Z.; Liu, H.; Wang, H.; Dong, Y.; Shi, D.; Zheng, J. The interface mechanical properties between polymer layer and marine sand with different particle sizes under the effect of temperature: Laboratory tests and artificial intelligence modelling. Ocean Eng. 2024, 312, 119255. [Google Scholar] [CrossRef]
- Kuang, D.; Long, Z.; Guo, R.; Yu, P. Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles. Mar. Georesour. Geotechnol. 2021, 39, 543–553. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Cui, J.; Zhu, C.-Q.; Wang, X.-Z. Shape characteristics of coral sand from the South China Sea. J. Mar. Sci. Eng. 2020, 8, 803. [Google Scholar] [CrossRef]
- Chao, Z.; Li, Z.; Dong, Y.; Shi, D.; Zheng, J. Estimating compressive strength of coral sand aggregate concrete in marine environment by combining physical experiments and machine learning-based techniques. Ocean Eng. 2024, 308, 118320. [Google Scholar] [CrossRef]
- Abdelaal, F.B.; Rowe, R.K.; Morsy, M.; e Silva, R.A. Degradation of HDPE, LLDPE, and blended polyethylene geomembranes in extremely low and high pH mining solutions at 85 °C. Geotext. Geomembr. 2023, 51, 27–38. [Google Scholar] [CrossRef]
- Rowe, R.K.; Sangam, H.P. Durability of HDPE geomembranes. Geotext. Geomembr. 2002, 20, 77–95. [Google Scholar] [CrossRef]
- Lavoie, F.L.; Kobelnik, M.; Valentin, C.A.; da Silva, J.L. Durability of HDPE geomembranes: An overview. Quim. Nova 2020, 43, 656–667. [Google Scholar] [CrossRef]
- Ghazizadeh, S.; Bareither, C.A. Effect of temperature on critical strength of geosynthetic clay liner/textured geomembrane composite systems. Geotext. Geomembr. 2024, 52, 12–26. [Google Scholar] [CrossRef]
- ASTM D5321-12; Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear. ASTM: West Conshohocken, PA, USA, 2021.
- Fleming, I.; Sharma, J.; Jogi, M. Shear strength of geomembrane–soil interface under unsaturated conditions. Geotext. Geomembr. 2006, 24, 274–284. [Google Scholar] [CrossRef]
- Zhao, H.; Tian, K. Shear strength of HDPE smooth geomembrane/bentonite-polymer geosynthetic clay liner interface. Geotext. Geomembr. 2023, 51, 73–86. [Google Scholar] [CrossRef]
- Araújo, G.L.S.; Sánchez, N.P.; Palmeira, E.M.; de Almeida, M.d.G.G. Influence of micro and macroroughness of geomembrane surfaces on soil-geomembrane and geotextile-geomembrane interface strength. Geotext. Geomembr. 2022, 50, 751–763. [Google Scholar] [CrossRef]
- Cen, W.; Bauer, E.; Wen, L.; Wang, H.; Sun, Y. Experimental investigations and constitutive modeling of cyclic interface shearing between HDPE geomembrane and sandy gravel. Geotext. Geomembr. 2019, 47, 269–279. [Google Scholar] [CrossRef]
- Shoushtari, M.; Lashkari, A.; Martinez, A. Effect of gas-oil contamination on the mechanical behavior of sand-woven geotextile interface: Experimental investigation and constitutive modeling. Geotext. Geomembr. 2023, 51, 56–71. [Google Scholar] [CrossRef]
- ASTM D6072/D6072M-19e1; Standard Practice for Obtaining Samples of Geosynthetic Clay Liners. ASTM: West Conshohocken, PA, USA, 2019.
- Chao, Z.; Fowmes, G.; Dassanayake, S. Comparative study of hybrid artificial intelligence approaches for predicting peak shear strength along soil-geocomposite drainage layer interfaces. Int. J. Geosynth. Ground Eng. 2021, 7, 60. [Google Scholar] [CrossRef]
- Chao, Z.; Shi, D.; Fowmes, G.; Xu, X.; Yue, W.; Cui, P.; Hu, T.; Yang, C. Artificial intelligence algorithms for predicting peak shear strength of clayey soil-geomembrane interfaces and experimental validation. Geotext. Geomembr. 2023, 51, 179–198. [Google Scholar] [CrossRef]
- Chao, Z.; Shi, D.; Fowmes, G. Mechanical behaviour of soil under drying–wetting cycles and vertical confining pressures. Environ. Geotech. 2023, 40, 1–11. [Google Scholar] [CrossRef]
- Shi, D.; Niu, J.; Zhang, J.; Chao, Z.; Fowmes, G. Effects of particle breakage on the mechanical characteristics of geogrid-reinforced granular soils under triaxial shear: A DEM investigation. Geomech. Energy Environ. 2023, 34, 100446. [Google Scholar] [CrossRef]
- Dassanayake, S.; Mousa, A.; Fowmes, G.J.; Susilawati, S.; Zamara, K. Forecasting the moisture dynamics of a landfill capping system comprising different geosynthetics: A NARX neural network approach. Geotext. Geomembr. 2023, 51, 282–292. [Google Scholar] [CrossRef]
Soil | Parameters | Value |
---|---|---|
coral sand | Particle size range (mm) | 1~2 |
Maximum dry density (g/cm3) | 1.75 | |
D10 | 1.03 | |
D30 | 1.09 | |
D50 | 1.17 | |
Optimum water content (%) | 9.65 | |
Coefficient of uniformity (Cu) | 1.46 | |
Coefficient of curvature (Cc) | 0.94 |
Parameters | Value |
---|---|
Thickness (mm) | 1.5 |
Density (g/cm3) | 0.942 |
Fracture strength (N/mm) | 16.3 |
Yield strength (N/mm) | 22.4 |
Yield elongation rate (%) | 12.3 |
Fracture elongation rate (%) | 120 |
Melting temperature (°C) | 134 |
Melt flow index (g/min) | 0.4 |
Melt flow ratio (—) | 123 ± 3 |
Puncture strength (N) | 402 |
Experiment Type | Cement Mortar Thickness (mm) | Normal Stress (kPa) | Shear Rate (mm/min) | Shear Amplitude (mm) | Temperature (°C) |
---|---|---|---|---|---|
Monotonic direct shear test | 10.0 | 20 35 50 | 1.0 | 50.0 | 5 20 40 60 80 |
Normal stress | 25 kPa | 35 kPa | 50 kPa |
Sample variance | 2.242 | 2.512 | 7.866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, Z.; Zhao, H.; Liu, H.; Cui, P.; Shi, D.; Lin, H.; Lu, Y.; Han, B.; Chen, S. The Temperature-Dependent Monotonic Mechanical Characteristics of Marine Sand–Geomembrane Interfaces. J. Mar. Sci. Eng. 2024, 12, 2193. https://doi.org/10.3390/jmse12122193
Chao Z, Zhao H, Liu H, Cui P, Shi D, Lin H, Lu Y, Han B, Chen S. The Temperature-Dependent Monotonic Mechanical Characteristics of Marine Sand–Geomembrane Interfaces. Journal of Marine Science and Engineering. 2024; 12(12):2193. https://doi.org/10.3390/jmse12122193
Chicago/Turabian StyleChao, Zhiming, Hongyi Zhao, Hui Liu, Peng Cui, Danda Shi, Hai Lin, Yang Lu, Bing Han, and Shuang Chen. 2024. "The Temperature-Dependent Monotonic Mechanical Characteristics of Marine Sand–Geomembrane Interfaces" Journal of Marine Science and Engineering 12, no. 12: 2193. https://doi.org/10.3390/jmse12122193
APA StyleChao, Z., Zhao, H., Liu, H., Cui, P., Shi, D., Lin, H., Lu, Y., Han, B., & Chen, S. (2024). The Temperature-Dependent Monotonic Mechanical Characteristics of Marine Sand–Geomembrane Interfaces. Journal of Marine Science and Engineering, 12(12), 2193. https://doi.org/10.3390/jmse12122193