The Main Geohazards in the Russian Sector of the Arctic Ocean
Abstract
:1. Introduction
2. A Review of Seismic Exploration and Seismological Observations in the Russian Sector of the Arctic Ocean
2.1. Seismic Exploration
2.2. Seismological Observations
2.2.1. On-Land and Marine Seismological Observations
2.2.2. Contribution of Marine Seismological Observations and Potential Cost of Geohazards
3. Review of Geohazards in the Russian Sector of the Arctic Ocean
3.1. Major Tectonic Structures and Active Fault Zones of the Arctic Part of Russia
3.2. Seismicity in the Russian Sector of the Arctic Region
3.3. Areas of Landslide and Gas Seep Concentration in the Russian Sector of the Arctic Seas
3.4. Tsunami Hazard Assessments for the Russian Arctic Ocean Coast
4. Patterns of Spatial Distribution of Geohazards and Their Relationship with the Geodynamic Situation of the Arctic Region
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- A.P. Karpinsky Russian Geological Research Institute. Geological Dictionary. Available online: https://www.vsegei.ru/ru/public/sprav/geodictionary/ (accessed on 1 October 2024).
- Ulomov, V.I.; Bogdanov, M.I. General Seismic Zoning of the Territory of the Russian Federation. Explanatory Note to the Set of Maps of OSR-2016 and the List of Settlements Located in Seismically Active Zones. Inzhenerniye Issled. 2016, 7, 49–121. (In Russian) [Google Scholar]
- Gurevich, V.I.; Musatov, E.E. (Eds.) Barents and White seas geological research history. Izv. Rus Geogr. Soc. 2000, 132, 80–85. (In Russian) [Google Scholar]
- Kaminsky, V.D.; Ivanov, V.L. The role of NIIGA-VNIIOkeangeologia in the polar and marine geological science. In 70 Years in the Arctic and the Global Ocean; Kaminsky, V.D., Avetisov, G.P., Ivanov, V.L., Eds.; VNIIOkeangeologia, SpB: St. Petersburg, Russia, 2018; pp. 3–18. (In Russian) [Google Scholar]
- Nikishin, A.M.; Petrov, E.I.; Cloetingh, S.; Korniychuk, A.V.; Morozov, A.F.; Petrov, O.V.; Poselov, V.A.; Beziazykov, A.V.; Skolotnev, S.G.; Malyshev, N.A.; et al. Arctic Ocean Mega Project: Paper 1—Data collection. Earth-Sci. Rev. 2021, 217, 21. [Google Scholar] [CrossRef]
- Nikishin, A.M.; Petrov, E.I.; Cloetingh, S.; Malyshev, N.A.; Morozov, A.F.; Posamentier, H.W.; Verzhbitsky, V.E.; Freiman, S.I.; Rodina, E.A.; Startseva, K.F.; et al. Arctic ocean mega project: Paper 2—Arctic stratigraphy and regional tectonic structure. Earth-Sci. Rev. 2021, 217, 51. [Google Scholar] [CrossRef]
- Poselov, V.A.; Kaminsky, V.D.; Zholondz, S.M. Justification of the Legal Continental Shelf of the Russian Federation in the Arctic Ocean. Miner. Resur. Rossii. Ekon. I Upr. 2019, 3, 48–54. (In Russian) [Google Scholar]
- Laverov, N.P.; Lobkovsky, L.I.; Kononov, M.V.; Dobretsov, N.L.; Vernikovsky, V.A.; Sokolov, S.D.; Shipilov, E.V. A geodynamic model of the evolution of the Arctic basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian continental shelf. Geotectonics 2013, 47, 1–30. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Kononov, M.V.; Shipilov, E.V. Geodynamic model of upper mantle convection and transformations of the Arctic lithosphere in the Mesozoic and Cenozoic. Izv. Phys. Solid Earth 2013, 49, 767–785. [Google Scholar] [CrossRef]
- Piskarev, A.L. Arctic Basin: Geology and Morphology; VNIIOkeangeologiya: St. Petersburg, Russia, 2016; 291p. (In Russian) [Google Scholar]
- Poselov, V.A.; Smirnov, O.E.; Sokolov, S.D. Geological Model for Legal Establishment of the Outer Boundary of Russia’s Continental Shelf in the Arctic Ocean. In Tectonics and Geodynamics of the Earth’s Crust and Mantle: Fundamental Problems-2022: Proceedings of the LIII Tectonic Conference. Moscow, Russia, 1–5 February 2022; Geos Publishing House: Moscow, Russia, 2022; pp. 109–112. (In Russian) [Google Scholar]
- Piskarev, A.L.; Kaminsky, V.D.; Kireev, A.A.; Poselov, V.A.; Savin, V.A.; Smirnov, O.E.; Bezumov, D.V.; Dergileva, E.A.; Elkina, D.V.; Ovanesian, G.I.; et al. The Structure of the Gakkel Ridge: Geological and Geophysical Data. Geotectonics 2023, 57, S84–S99. [Google Scholar] [CrossRef]
- Interactive Map of the Exploration of the Territory of the Russian Federation of the Russian Federal Geological Fund. Available online: https://www.rfgf.ru/info-resursy/kartogramma-izuchennosti (accessed on 1 October 2024).
- Spiridonov, M.A.; Devdariani, N.A.; Kalinin, A.V.; Kropachev, Y.P.; Manuylov, S.F.; Rybalko, A.E.; Spiridonova, E.A. The White Sea geology. Sov.Geol. 1980, 4, 45–55. (In Russian) [Google Scholar]
- Gramberg, I.S.; Pogrebitsky, Y.E. (Eds.) Geological structure of the USSR and patterns of mineral deposits distribution. In Morya Sovetskoy Arktiki; Nedra: Leningrad, Russia, 1984; Volume 9, 280p. (In Russian) [Google Scholar]
- Aksenov, A.A. (Ed.) The Arctic Shelf of Eurasia during the Late Quaternary; Nauka: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- Gramberg, I.S. (Ed.) Barents Shelf Plate; VNIIOkeangeologija Trudy; All-Russian Research Institute for Geologyand Mineral Resources of the World Ocean: Leningrad, Russia, 1988; Volume 196, 264p. (In Russian) [Google Scholar]
- Drachev, S.S. Laptev Sea Rifted Continental Margin: Modern Knowledge and Unsolved Questions. Polarforschung 2000, 68, 41–50. [Google Scholar]
- Arakcheev, D.B.; Kovtonuk, G.P.; Tkacheva, E.A.; Anisimova, A.B.; Korobko, E.I.; Amelina, O.I.; Michaylova, G.A. Geological, geophysical and geochemical studying of the Russian Arctic zone. Min. Res. Rus. Econ. Manag. 2019, 3, 8–13. (In Russian) [Google Scholar]
- Musatov, E.E. Neotectonics of The North-Arctic Continental Margin. Ph.D. Thesis, St. Petersburg, Russia, 1995; 3p. (In Russian). [Google Scholar]
- Lukina, N.V.; Patyk-Kara, N.G.; Sokolov, S.Y. Neotectonic Structures and Active Faults of Russian Arctic Shelf. Atlas “Geology and Mineral Resources of the Russian Shelf Areas”; Alekseev, M.N., Ed.; Scientific World: Moscow, Russia, 2004; pp. 3-3–3-4, (In Russian, English). [Google Scholar]
- Tectonic Zoning Map of Russia. Scale 1:5,000,000; Morozov, A.F. (Ed.) Ministry of Natural Resources and Environment of the Russian Federation; IMGRE, GEOKART: Moscow, Russia, 2001. (In Russian) [Google Scholar]
- Mazarovich, O.A.; Milanovsky, E.E.; Kostyuchenko, S.L. Tectonic Map of Russia, Adjacent Territories and Waters. Scale 1: 4,000,000; Moscow State University Publishing: Moscow, Russia, 2007. [Google Scholar]
- Tectonic Map of Russia, Adjacent with Materials of SNG Countries. 1:2,500,000; Petrov, O.V.; Leonov, Y.G. (Eds.) VSEGEI, VNIIOkeangeologia, Spb.: St. Petersburg, Russia, 2008. (In Russian) [Google Scholar]
- Verba, M.L.; Belyev, I.V.; Shtykova, N.B. Tectonic map of the East-Siberian Sea. Prospect. Prot. Miner. Resour. 2011, 10, 66–70. [Google Scholar]
- Tectonic Map of the Arctic. Scale 1:10,000,000, 1st ed.; Pubellier, M.; Rossi, P.; Petrov, O.; Shokalsky, S.; St-onge, M.; Khanchuk, A.; Pospelov, I. (Eds.) CGMW-VSEGEI: St. Petersburg, Russia, 2018. [Google Scholar]
- Tectonostratigraphic Atlas of the Arctic: (Eastern Russia and Adjacent Areas); Petrov, O.V.; Smelror, M.; Kiselev, E.A.; Morozov, A.F.; Kazmin, Y.B.; Kaminsky, V.D.; Fedonkin, M.A. (Eds.) VSEGEI, SpB: St. Petersburg, Russia, 2020; 152p. (In Russian) [Google Scholar]
- Active Faults of Eurasia Database (AFEAD). Available online: http://neotec.ginras.ru/database.html (accessed on 1 October 2024).
- Petrov, O.V. (Ed.) Geology and mineral resources of Russia; VSEGEI, SpB: St. Petersburg, Russia, 2017; 84p. [Google Scholar]
- Geophysical Service of the Russian Academy of Sciences. Available online: http://www.gsras.ru/ (accessed on 25 September 2024).
- Antonovskaya, G.N.; Kapustian, N.K.; Konechnaya, Y.V.; Danilov, A.V. Registration Capabilities of Russian Island-Based Seismic Stations: Case Study of the Gakkel Ridge Monitoring. Seism. Instrum. 2020, 56, 33–45. [Google Scholar] [CrossRef]
- Morozov, A.N.; Vaganova, N.V.; Asming, V.E.; Evtyugina, Z.A. The ML scale in western Eurasian Arctic. Ross. Seismol. Zhurnal 2020, 2, 63–68. [Google Scholar] [CrossRef]
- Avetisov, G.P. Deep Structure of the New Siberian Islands and Adjacent Waters Based on Seismological Data. Sov. Geol. 1982, 11, 113–122. (In Russian) [Google Scholar]
- Avetisov, G.P. Earthquake Hypocenters and Focal Mechanisms in the Lena River Delta and Its Surroundings. J. Volcanol. Seismol. 1991, 6, 59–69. [Google Scholar]
- Avetisov, G.P.; Vinnik, A.A.; Kopylova, A.V. Modernized Bank of Arctic Seismological Data. Ross. Geofiz. Zhurnal 2001, 23–24, 42–48. (In Russian) [Google Scholar]
- “Earthquakes of Russia” Database. Geophysical Survey of the Russian Academy of Sciences. Available online: http://eqru.gsras.ru/ (accessed on 3 October 2024).
- Krylov, A.A.; Novikov, M.A.; Kovachev, S.A.; Roginskiy, K.A.; Ilinsky, D.A.; Ganzha, O.Y.; Ivanov, V.N.; Timashkevich, G.K.; Samylina, O.S.; Lobkovsky, L.I.; et al. Features of Seismological Observations in the Arctic Seas. J. Mar. Sci. Eng. 2023, 11, 2221. [Google Scholar] [CrossRef]
- Krylov, A.A.; Lobkovskii, L.I.; Kovachev, S.A.; Baranov, B.V.; Rukavishnikova, D.D.; Tsukanov, N.V.; Dozorova, K.A.; Semiletov, I.P. Geodynamic Regimes in the Laptev Sea Region According to the Latest Seismological Data. Dokl. Earth Sci. 2023, 513, 1338–1343. [Google Scholar] [CrossRef]
- Krylov, A.A.; Kulikov, M.E.; Kovachev, S.A.; Medvedev, I.P.; Lobkovsky, L.I.; Semiletov, I.P. Peculiarities of the HVSR Method Application to Seismic Records Obtained by Ocean-Bottom Seismographs in the Arctic. Appl. Sci. 2022, 12, 9576. [Google Scholar] [CrossRef]
- Krylov, A.A.; Ananiev, R.A.; Chernykh, D.V.; Alekseev, D.A.; Balikhin, E.I.; Dmitrevsky, N.N.; Novikov, M.A.; Radiuk, E.A.; Domaniuk, A.V.; Kovachev, S.A.; et al. A Complex of Marine Geophysical Methods for Studying Gas Emission Process on the Arctic Shelf. Sensors 2023, 23, 3872. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.; Semiletov, I.; Sergienko, V.; Lobkovsky, L.; Yusupov, V.; Salyuk, A.; Salomatin, A.; Chernykh, D.; Kosmach, D.; Panteleev, G.; et al. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos. Trans. R. Soc. A Math. Phys. Eng. 2015, 373, 20140451. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.; Semiletov, I.; Chuvilin, E. Understanding the permafrost–hydrate system and associated methane releases in the East Siberian Arctic Shelf. Geosciences 2019, 9, 251. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Kishankov, A.V.; Kazanin, A.G. Permafrost, Gas Hydrates and Gas Seeps in the Central Part of the Laptev Sea. Dokl. Earth Sc. 2021, 500, 766–771. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.; Kishankov, A.; Kazanin, A.; Kazanin, G. Distribution of permafrost and gas hydrates in relation to intensive gas emission in the central part of the Laptev Sea (Russian Arctic). Mar. Pet. Geol. 2022, 138, 105527. [Google Scholar] [CrossRef]
- Semiletov, I.P.; Pipko, I.I.; Pivovarov, N.Y.; Popov, V.V.; Zimov, S.A.; Voropaev, Y.V.; Daviodov, S.P. Atmospheric carbon emission from North Asian Lakes: A factor of global significance. Atmos. Environ. 1996, 30, 1657–1671. [Google Scholar] [CrossRef]
- Semiletov, I.; Gustafsson, Ö. East Siberian Shelf Study Alleviates Scarcity of Observations. Eos Trans. Am. Geophys. Union 2009, 90, 145–152. [Google Scholar] [CrossRef]
- Sapart, C.J.; Shakhova, N.; Semiletov, I.; Jansen, J.; Szidat, S.; Kosmach, D.; Dudarev, O.; van der Veen, C.; Egger, M.; Sergienko, V.; et al. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences 2017, 14, 2283–2292. [Google Scholar] [CrossRef]
- Koshurnikov, A.V.; Tumskoy, V.E.; Shakhova, N.E.; Sergienko, V.I.; Dudarev, O.V.; Gunar, A.Y.; Pushkarev, P.Y.; Semiletov, I.P.; Koshurnikov, A.A. The first ever application of electromagnetic sounding for mapping the submarine permafrost table on the Laptev Sea shelf. Dokl. Earth Sci. 2016, 469, 860–863. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Gustafsson, O.; Sergienko, V.; Lobkovsky, L.; Dudarev, O.; Tumskoy, V.; Grigoriev, M.; Mazurov, A.; Salyuk, A.; et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat. Comm. 2017, 8, 15872. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Baranov, A.A.; Ramazanov, M.M.; Vladimirova, I.S.; Gabsatarov, Y.V.; Semiletov, I.P.; Alekseev, D.A. Trigger Mechanisms of Gas Hydrate Decomposition, Methane Emissions, and Glacier Breakups in Polar Regions as a Result of Tectonic Wave Deformation. Geosciences 2022, 12, 372. [Google Scholar] [CrossRef]
- Shakhova, N.E.; Alekseev, V.A.; Semiletov, I.P. Predicted methane emission on the East Siberian shelf. Dokl. Earth Sc. 2010, 430, 190–193. [Google Scholar] [CrossRef]
- Whiteman, G.; Hope, C.; Wadhams, P. Vast costs of Arctic change. Nature 2013, 499, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Grachev, A.F. Main problems of the newest tectonics and geodynamics of Northern Eurasia. Phys. Earth 1996, 12, 5–36. (In Russian) [Google Scholar]
- Shipilov, E.V.; Vernikovsky, V.A. The Svalbard–Kara plates junction: Structure and geodynamic history. Russ. Geol. Geophys. 2010, 51, 58–71. [Google Scholar] [CrossRef]
- Moroz, E.A. Neotectonics of North-Western periphery of the Barents sea shelf. Monitoring. Sci. Technol. Earth Sci. 2016, 4, 6–13. (In Russian) [Google Scholar]
- Shipilov, E.V.; Matishov, G.A. Tectonic setting and geodynamic nature of the Saint Anna trough (northern Barents-Kara continental margin). Dokl. Earth Sc. 2006, 411, 1370–1374. [Google Scholar] [CrossRef]
- Verba, M.L. Current Bilateral crustal extension in the Barents-Kara Region and its role in hydrocarbon potential evaluation. Neftegazovaya Geologiya. Teoriya i Praktika 2007, 2, 16. Available online: http://www.ngtp.ru/rub/4/026.pdf (accessed on 3 October 2024). (In Russian).
- Moroz, E.A. Neotectinocs and Relief The North-West Barents Sea Shelf Border. Ph.D. Thesis, GIN RAN, Moscow, Russia, 4 October 2017; 128p. (In Russian). [Google Scholar]
- State Geological Mapping of the Russian Federation. Available online: https://www.geolkarta.ru/ (accessed on 1 October 2024).
- Antonovskaya, G.N.; Basakina, I.M.; Konechnaya, Y.V. Distribution of Seismicity and Heat Flow Anomalies in the Barents Sea Region. Geotectonics 2018, 52, 45–55. [Google Scholar] [CrossRef]
- Morozov, A.N.; Vaganova, N.V.; Konechnaya, Y.V. Seismicity of the Northern Barents Sea in the area of the Franz Victoria and Orla troughs. Geotectonics 2014, 48, 232–238. [Google Scholar] [CrossRef]
- Drachev, S.S.; Kaul, N.; Beliaev, V.N. Eurasia spreading basin to Laptev Shelf transition: Structural pattern and heat flow. Geophys. J. Int. 2003, 152, 688–698. [Google Scholar] [CrossRef]
- Drachev, S.S.; Mazur, S.; Campbell, S.; Green, C.; Shkarubo, S.I.; Tishchenko, A. Crustal architecture of the Laptev Rift System in the East Siberian Arctic based on 2D long-offset seismic profiles and gravity modeling. Pet. Geosci. 2018, 24, 402–441. [Google Scholar] [CrossRef]
- Rekant, P.V.; Gusev, E.A. The seismic-acoustic evidences of the recent tectonics on the Laptev Sea continental margin. Arct. Antarct. Res. 2009, 2, 85–94. (In Russian) [Google Scholar]
- Gramberg, I.S.; Piskarev, A.L.; Belyaev, I.V. The Block Tectonics of the East Siberian and the Chukchi Seas Floor As Deduced from Gravity and Magnetic Anomalies. Dokl. Akad. Nauk 1997, 353, 656–659. [Google Scholar]
- Rekant, P.V.; Leontiev, D.I.; Petrov, E.O. Neotectionic stage of the Arctic Basin evolution: New ideas, timing and regional correlation. Reg. Geol. Metallog. 2020, 81, 60–72. (In Russian) [Google Scholar]
- Dunaev, N.N.; Levchenko, O.V.; Merklin, L.R.; Pavlidis, Y.A. The structure and origin of the East Novaya Zemlya trough. Polar Geogr. 1991, 15, 235–242. [Google Scholar] [CrossRef]
- Musatov, E.E.; Romaschenko, O.G. Geomorphology, most recent stage of development and neotectonic condition of the Novaya Zemlya shelf in case of oil and gas occurrence. Oceanology 2000, 43, 292–301. (In Russian) [Google Scholar]
- Artyushkov, E.V. The formation mechanism of the Barents basin. Russ. Geol. Geophys. 2005, 46, 700–713. [Google Scholar]
- Gainanov, V.G.; Polyak, L.V.; Gataullin, V.N.; Zverev, A.S. Acoustic studies in the traces of sheet glaciations in the Kara sea. Mosc. Univ. Bull. 2005, 60, 38–44. [Google Scholar]
- Krapivner, R.B. Rapid sagging of the Barents shelf over the last 15–16 ka. Geotectonics 2006, 40, 197–207. [Google Scholar] [CrossRef]
- Krapivner, R.B. Indications of neotectonic activity at the Barents Sea shelf. Geotectonics 2007, 41, 149–162. [Google Scholar] [CrossRef]
- Zhuravlev, V.A. Structure of earth crust of the White Sea region. Prospect. Prot. Miner. Resour. 2007, 9, 22–26. (In Russian) [Google Scholar]
- Egorov, A.S.; Prischepa, O.M.; Nefedov, Y.V.; Kontorovich, V.A.; Vinokurov, I.Y. Deep structure, tectonics and petroleum potential of the western sector of the Russian arctic. J. Mar. Sci. Eng. 2021, 9, 258. [Google Scholar] [CrossRef]
- Lisitsyn, A.P. (Ed.) The Barents Sea System; GEOS: Moscow, Russia, 2021; 672p. [Google Scholar]
- Korago, E.A.; Kovaleva, G.N.; Schekoldin, R.A.; Il’in, V.F.; Gusev, E.A.; Krylov, A.A.; Gorbunov, D.A. Geological Structure of the Novaya Zemlya Archipelago (West Russian Arctic) and Peculiarities of the Tectonics of the Eurasian Arctic. Geotectonics 2022, 56, 123–156. [Google Scholar] [CrossRef]
- Nikonov, A.A. Active faults: Definition and identification problems. Geoecology 1995, 4, 16–27. (In Russian) [Google Scholar]
- Lunina, O.V. Activity rating of Pliocene–Quaternary faults: A formalized approach (example of the Baikal rift system). Russ. Geol. Geophys. 2010, 51, 412–422. [Google Scholar] [CrossRef]
- Andieva, T.A. Tectonic position and major structures of the Laptev Sea. Neftegazov. Geologiya. Teor. I Prakt. 2008, 3, 1–28. Available online: https://ngtp.ru/rub/4/8_2008.pdf (accessed on 3 October 2024). (In Russian).
- Imaeva, L.P.; Imaev, V.S.; Mel’nikova, V.I.; Koz’Min, B.M. Recent structures and tectonic regimes of the stress–strain state of the Earth’s crust in the northeastern sector of the Russian Arctic region. Geotectonics 2016, 50, 535–552. [Google Scholar] [CrossRef]
- Franke, D.; Hinz, K.; Block, M.; Drachev, S.; Neben, S.; Kos’ko, M.; Reichert, C.; Roeser, H.A. Tectonics of the Laptev Sea Region in North-Eastern Siberia. Polarforschung 2000, 68, 51–58. [Google Scholar]
- International Seismological Centre. Available online: http://www.isc.ac.uk/iscbulletin/search/ (accessed on 1 October 2024).
- U.S. Geological Survey. Available online: https://earthquake.usgs.gov/earthquakes/search/ (accessed on 1 October 2024).
- Morozov, A.N.; Vaganova, N.V.; Antonovskaya, G.N.; Asming, V.E.; Gabsatarova, I.P.; Dyagilev, R.A.; Shakhova, E.V.; Evtyugina, Z.A. Low-Magnitude Earthquakes at the Eastern Ultraslow-Spreading Gakkel Ridge, Arctic Ocean. Seismol. Res. Lett. 2021, 92, 2221–2233. [Google Scholar] [CrossRef]
- Morozov, A.N.; Vaganova, N.V.; Starkov, I.V.; Mikhaylova, Y.A. Modern Low-Magnitude Earthquake Swarms of the Gakkel Mid-Oceanic Ridge, Arctic Ocean, Russ. J. Earth. Sci. 2023, 23, ES3007. [Google Scholar] [CrossRef]
- Morozov, A.N.; Vaganova, N.V.; Mikhailova, Y.A.; Morozova, E.R.; Starkov, I.V. Earthquake swarms as evidence of volcano-tectonic processes of the slowest spreading Gakkel Ridge in the Arctic. Geodyn. Tectonophys. 2024, 15, 0737. [Google Scholar] [CrossRef]
- Schlindwein, V.; Müller, C.; Jokat, W. Seismoacoustic evidence for volcanic activity on the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Geophys. Res. Lett. 2005, 32, 18. [Google Scholar] [CrossRef]
- Schlindwein, V.; Müller, C.; Jokat, W. Microseismicity of the ultraslow-spreading Gakkel Ridge, Arctic Ocean: A pilot study. Geophys. J. Int. 2007, 169, 100–112. [Google Scholar] [CrossRef]
- Schlindwein, V.; Riedel, C. Location and source mechanism of sound signals at Gakkel Ridge, Arctic Ocean: Submarine Strombolian activity in the 1999–2001 volcanic episode. Geochem. Geophys. Geosyst. 2010, 11, 1. [Google Scholar] [CrossRef]
- Schlindwein, V.; Demuth, A.; Korger, E.; Laderach, C.; Schmid, F. Seismicity of the Arctic mid-ocean ridge system. Polar Sci. 2015, 9, 146–157. [Google Scholar] [CrossRef]
- Schlindwein, V.; Schmid, F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 2016, 535, 276–279. [Google Scholar] [CrossRef]
- Korger, E.I.M.; Schlindwein, V. Seismicity and structure of the 85°E volcanic complex at the ultraslow spreading Gakkel Ridge from local earthquake tomography. Geophys. J. Int. 2014, 196, 539–551. [Google Scholar] [CrossRef]
- Koulakov, I.; Schlindwein, V.; Liu, M.; Gerya, T.; Jakovlev, A.; Ivanov, A. Low-degree mantle melting controls the deep seismicity and explosive volcanism of the Gakkel Ridge. Nat. Commun. 2022, 13, 3122. [Google Scholar] [CrossRef]
- Avetisov, G.P. Once Again About Earthquakes of the Laptev Sea. Geological and Geophysical Characteristics of the Arctic Region; VNIIOkeangeologia: St. Petersburg, Russia, 2000; Volume 3, pp. 104–114. (In Russian) [Google Scholar]
- Drachev, S.S. Tectonics of the Laptev Sea Rift System. Geotectonics 2000, 6, 43–58. (In Russian) [Google Scholar]
- Imaeva, L.P.; Kolodeznikov, I.I. (Eds.) Seismotektonika Severo-Vostochnogo Sektora Rossiiskoi Arktiki (The Seismicity of the Northeastern Sector of the Russian Arctic); Institute of the Earth’s Crust, Siberian Branch RAS; Institute of Geology of Diamonds and Noble Metals, Siberian Branch RAS: Novosibirsk, Russia, 2017; 134p. (In Russian) [Google Scholar]
- Antonovskaya, G.N.; Kovalev, S.M.; Konechnaya, Y.V.; Smirnov, V.N.; Danilov, A.V. New information about the seismicity of the Russian Arctic based on the work of the seismic station “Severnaya Zemlya. ” Probl. Arktiki I Antarkt. 2018, 64, 170–181. [Google Scholar] [CrossRef]
- Morozov, A.N.; Vaganova, N.V.; Konechnaya, Y.V.; Asming, V.E.; Dulentsova, L.G.; Evtyugina, Z.A. Seismicity in the far Arctic areas: Severnaya Zemlya and the Taimyr Peninsula. J. Seismol. 2021, 25, 1171–1188. [Google Scholar] [CrossRef]
- Gresov, A.I.; Yatsuk, A.V. Distribution and genesis of hydrocarbon gases in bottom sediments of the Laptev-Siberian Sea zone of the East Arctic shelf. Tikhookeanskaya Geol. 2024, 43, 74–89. [Google Scholar] [CrossRef]
- Avetisov, G.P.; Zinchenko, A.G.; Musatov, E.E.; Piskarev, A.L. Seismic Zoning of the Arctic Region. Russian Arctic: Geological History, Minerageny, Geoecology; VNIIOG Publishing House: St. Petersburg, Russia, 2002; pp. 162–175. (In Russian) [Google Scholar]
- Avetisov, G.P. Earthquake hypocenters in the Chukchi Sea and its surroundings. In Geological and Geophysical Characteristics of the Lithosphere of the Arctic Region; VNIIOkeangeologiya: St. Petersburg, Russia, 1996; Volume 1, pp. 120–126. (In Russian) [Google Scholar]
- Ovsyuchenko, A.N.; Edemskiy, D.E.; Zhostkov, R.A. Active tectonics of the Eastern Arctic: New data from geological and geophysical studies at Cape Foma (west of Wrangel Island). Geotectonics 2022, 3, 3–19. [Google Scholar] [CrossRef]
- Nikishin, A.M.; Startseva, K.F.; Freiman, S.I.; Zhukov, N.N.; Verzhbitsky, V.E.; Malyshev, N.A.; Cloetingh, S.; Petrov, E.I.; Posamentier, H.; Lineva, M.D. Sedimentary basins of the East Siberian Sea and the Chukchi Sea and the adjacent area of the Amerasia Basin: Seismic stratigraphy and stages of geological history. Geotectonics 2019, 53, 635–657. [Google Scholar] [CrossRef]
- Morozov, A.N.; Vaganova, N.V.; Asming, V.E.; Nikonov, A.A.; Sharov, N.V.; Konechnaya, Y.V.; Mihailova, Y.A.; Evtrugina, Z.A. The present-day seismicity of the White Sea region. J. Volcanol. Seismol. 2019, 1, 36–51. [Google Scholar] [CrossRef]
- Morozov, A.N.; Vaganova, N.V.; Asming, V.E.; Baluev, A.S.; Asming, S.V. Seismicity of the White Sea Region. Seism. Instrum. 2022, 58, 311–329. [Google Scholar] [CrossRef]
- Morozov, A.N.; Vaganova, N.V.; Asming, V.E.; Peretokin, S.A.; Aleshin, I.M. Seismicity of the Western Sector of the Russian Arctic. Izv. Phys. Solid Earth 2023, 2, 115–148. [Google Scholar] [CrossRef]
- Mosher, D.C.; Shipp, R.C.; Moscardelli, L.; Chaytor, J.D.; Baxter, C.D.P.; Lee, H.J.; Urgeles, R. (Eds.) Submarine Mass Movements and Their Consequences; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK; New York, NY, USA, 2010; Volume 28, 818p. [Google Scholar] [CrossRef]
- Sultan, N.; Cochonat, P.; Canals, M.; Cattaneo, A.; Dennielou, B.; Haflidason, H.; Laberg, J.S.; Long, D.; Mienert, J.; Trincardi, F.; et al. Triggering Mechanisms of Slope Instability Processes and Sediment Failures on Continental Margins: A Geotechnical Approach. Mar. Geol. 2004, 213, 291–321. [Google Scholar] [CrossRef]
- Minning, M.; Hebbeln, D.; Hensen, C.; Kopf, A. Geotechnical and Geochemical Investigations of the Marquês de Pombal Land-slide at the Portuguese Continental Margin. Nor. J. Geol. 2006, 86, 187–198. [Google Scholar]
- Wang, C.-Y.; Manga, M. Hydrologic responses to earthquakes and a general metric. Geofluids 2010, 10, 206–216. [Google Scholar] [CrossRef]
- Field, M.E.; Jennings, A.E. Seafloor gas seeps triggered by a northern California earthquake. Mar. Geol. 1987, 77, 39–51. [Google Scholar] [CrossRef]
- Kelley, J.T.; Dickson, S.M.; Belknap, D.F.; Barnhardt, W.A.; Henderson, M. Giant sea-bed pockmarks: Evidence for gas escape from Belfast Bay, Maine. Geology 1994, 22, 59–62. [Google Scholar] [CrossRef]
- Kuscu, I.; Okamura, M.; Matsuoka, H.; Gökaşan, E.; Awata, Y.; Tur, H.; Şimşek, M.; Keçer, M. Seafloor gas seeps and sediment failures triggered by the August 17, 1999 earthquake in the Eastern part of the Gulf of Izmit, Sea of Marmara, NW Turkey. Mar. Geol. 2005, 215, 193–214. [Google Scholar] [CrossRef]
- Obzhirov, A.I. On gas-geochemical precursors of seismic activations, earthquakes and volcanic manifestations in Kamchatka and the Sea of Okhotsk. Geosystems Transit. Zones 2018, 2, 57–68. (In Russian) [Google Scholar] [CrossRef]
- Sobisevich, A.L.; Presnov, D.A.; Sobisevich, L.E.; Shurup, A.S. Localization of Geological Inhomogeneities on the Arctic Shelf by Analysis of the Seismoacoustic Wave Field Mode Structure. Dokl. Earth Sc. 2018, 479, 355–357. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Salyuk, A.; Rekant, P.; Kosmach, D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. J. Geophys. Res. Ocean. 2010, 115, C08007. [Google Scholar] [CrossRef]
- Sokolov, S.Y.; Moroz, E.A.; Zarayskaya, Y.A.; Abramova, A.S.; Ananyev, R.A.; Sukhikh, E.A. Mapping of dangerous geological objects and processes at the Northern and Central parts of the Barents Sea shelf according to the hydroacoustic data from RV “Akademik Nikolai Strakhov”. Arct. Ecol. Econ. 2023, 13, 164–179. [Google Scholar] [CrossRef]
- Rybalko, A.E.; Zakharov, M.S.; Shcherbakov, V.A.; Loktev, A.V. Engineering geological zoning of the Russian Arctic shelf. Geoecology. Eng. Geol. Hydrogeol. Geocryol. 2021, 3, 52–68. (In Russian) [Google Scholar] [CrossRef]
- Leifer, I.; Chernykh, D.; Shakhova, N.; Semiletov, I. Sonar Gas Flux Estimation by Bubble Insonification: Application to Methane Bubble Fluxes from the East Siberian Arctic Shelf Seabed. Cryosphere 2017, 11, 1333–1350. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Gresov, A.I.; Yatsuk, A.V. Gas-geochemical signs of oil and gas potential of the southeastern part of the East Siberian Sea. Russ. Oil Gas Geol. 2020, 4, 83–96. [Google Scholar] [CrossRef]
- Weidner, E.; Weber, T.C.; Mayer, L.; Jakobsson, M.; Chernykh, D.; Semiletov, I. A wideband acoustic method for direct assessment of bubble-mediated methane flux. Cont. Shelf Res. 2019, 173, 104–115. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Belcheva, N. The Great Siberian Rivers as a source of methane on the Russian Arctic shelf. Dokl. Earth Sci. 2007, 414, 734–736. [Google Scholar] [CrossRef]
- Kokhan, A.V.; Denisova, A.P.; Moroz, E.A.; Sukhih, E.A.; Zarayskaya, Y.A.; Razumovskiy, A.A. Geomorphology of Pingo-Like Structures of the South-Eastern Part of the Barents Sea (by Results of Legs 38 and 41 of R/V “Akademik Nikolay Strakhov”); Poli-Press: Tver, Russia, 2021; Volume III, pp. 68–71. (In Russian) [Google Scholar]
- Bogoyavlensky, V.I.; Kazanin, A.G.; Kishankov, A.V. Dangerous gas-saturated objects in the world ocean: The Laptev Sea. Drill. Oil 2018, 5, 20–28. (In Russian) [Google Scholar]
- Bogoyavlensky, V.I.; Kazanin, A.G.; Kishankov, A.V.; Kazanin, G.A. Earth degassing in the Arctic: Comprehensive analysis of factors of powerful gas emission in the Laptev Sea. Arct. Ecol. Econ. 2021, 11, 178–194. [Google Scholar] [CrossRef]
- Geissler, W.H.; Gebhardt, A.C.; Gross, F.; Wollenburg, J.; Jensen, L.; Schmidt-Aursch, M.C.; Krastel, S.; Elger, J.; Osti, G. Arctic megaslide at presumed rest. Sci. Rep. 2016, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Schlager, U.; Jokat, W.; Weigelt, E.; Gebhardt, C. Submarine landslides along the Siberian termination of the Lomonosov Ridge, Arctic Ocean. Geomorphology 2021, 382, 107679. [Google Scholar] [CrossRef]
- Løvholt, F.; Griffin, J.; Salgado-Gálvez, M.A. Tsunami Hazard and Risk Assessment on the Global Scale. In Complexity in Tsunamis, Volcanoes, and Their Hazards; Tilling, R.I., Ed.; Encyclopedia of Complexity and Systems Science Series; Springer: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Petrov, O.V.; Morozov, A.F.; Chepkasova, T.V.; Kiselev, E.A.; Zastrozhnov, A.S.; Verbitsky, V.R.; Strelnikov, S.I.; Tarnogradsky, V.D.; Shkatova, V.K.; Krutkina, O.N.; et al. Map of Quaternary Formations of the Territory of the Russian Federation, 2014, Scale 1:2,500,000. Available online: http://neotec.ginras.ru/neomaps/M025_Russia_2014_Quatern-depos.jpg (accessed on 3 October 2024). (In Russian).
- Løvholt, F.; Glimsdal, S.; Harbitz, C.B. On the Landslide Tsunami Uncertainty and hazard. Landslides 2020, 17, 2301–2315. [Google Scholar] [CrossRef]
- Levitan, M. Sedimentation rates in the Arctic Ocean during the last five marine isotope stages. Oceanology 2015, 55, 425–433. [Google Scholar] [CrossRef]
- Choi, Y.; Kang, S.-G.; Jin, Y.K.; Hong, J.K.; Shin, S.-R.; Kim, S.; Choi, Y. Estimation of the gas hydrate saturation from multi-channel seismic data on the western continental margin of the Chukchi Rise in the Arctic Ocean. Front. Earth Sci. 2022, 2, 45–58. [Google Scholar] [CrossRef]
- Kulikov, E.A.; Ivaschenko, A.I.; Medvedev, I.P.; Fain, I.V.; Yakovenko, O.I. Tsunami Hazard of the Arctic Coast of Russia. Part 1. Catalog of Probable Tsunamigenic Earthquakes. Georisk 2019, 13, 18–32. (In Russian) [Google Scholar] [CrossRef]
- Kulikov, E.A.; Ivaschenko, A.I.; Medvedev, I.P.; Fain, I.V.; Yakovenko, O.I. Tsunami Hazard of the Arctic Coast of Russia. Part 2. Numerical modeling of tsunamis. Georisk 2019, 13, 56–67. (In Russian) [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Muhari, A.; Wijanarto, A.B. Insights on the Source of the 28 September 2018 Sulawesi Tsunami, Indonesia Based on Spectral Analyses and Numerical Simulations. Pure Appl. Geophys. 2019, 176, 25–43. [Google Scholar] [CrossRef]
- Strzelecki, M.C.; Jaskólski, M.W. Arctic tsunamis threaten coastal landscapes and communities—Survey of Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland. Nat. Hazards Earth Syst. Sci. 2020, 20, 2521–2534. [Google Scholar] [CrossRef]
- Paris, A.; Okal, E.A.; Guérin, C.; Heinrich, P.; Schindelé, F.; Hébert, H. Numerical Modeling of the June 17, 2017 Landslide and Tsunami Events in Karrat Fjord, West Greenland. Pure Appl. Geophys. 2019, 176, 3035–3057. [Google Scholar] [CrossRef]
- Svennevig, K.; Hicks, S.P.; Forbriger, T.; Lecocq, T.; Widmer-Schnidrig, R.; Mangeney, A.; Hibert, C.; Korsgaard, N.J.; Lucas, A.; Satriano, C.; et al. A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days. Science 2024, 385, 1196–1205. [Google Scholar] [CrossRef]
- Heller, V.; Attili, T.; Chen, F.; Gabl, R.; Wolters, G. Large-scale investigation into iceberg-tsunamis generated by various iceberg calving mechanisms. Coast. Eng. 2021, 163, 103745. [Google Scholar] [CrossRef]
- Dudley, W.C.; Lee, M. Tsunami! University of Hawaii Press: Honolulu, HI, USA, 1998; 362p. [Google Scholar]
- Medvedeva, A.; Medvedev, I.; Fine, I.; Kulikov, E.; Yakovenko, O. Local and trans-oceanic tsunamis in the Bering and Chukchi Seas based on numerical modeling. Pure Appl. Geophys. 2023, 180, 1639–1659. [Google Scholar] [CrossRef]
- Wang, Y.; Su, H.Y.; Ren, Z.; Ma, Y. Source properties and resonance characteristics of the tsunami generated by the 2021 M 8.2 Alaska earthquake. J. Geophys. Res. Ocean. 2022, 127, e2021JC018308. [Google Scholar] [CrossRef]
- Antonovskaya, G.N.; Basakina, I.M.; Vaganova, N.V.; Kapustian, N.K.; Konechnaya, Y.V.; Morozov, A.N. Spatiotemporal relationship between Arctic mid-ocean ridge system and intraplate seismicity of the European Arctic. Seismol. Res. Lett. 2021, 92, 2876–2890. [Google Scholar] [CrossRef]
- Barnard, P.E.; Moomaw, W.R.; Fioramonti, L.; Laurance, W.F.; Mahmoud, M.I.; O’Sullivan, J.; Rapley, C.G.; Rees, W.E.; Rhodes, C.J.; Ripple, W.J.; et al. World scientists’ warnings into action, local to global. Sci. Prog. 2021, 104, 00368504211056290. [Google Scholar] [CrossRef] [PubMed]
- Chernykh, D.V.; Salomatin, A.S.; Yusupov, V.I.; Shakhova, N.E. Acoustic investigations of the deepest methane seeps in the Okhotsk Sea. Bull. Tomsk Polytech. 2021, 332, 57–68. [Google Scholar] [CrossRef]
- Bukhanov, B.; Chuvilin, E.; Zhmaev, M.; Shakhova, N.; Spivak, E.; Dudarev, O.; Osadchiev, A.; Spasennykh, M.; Semiletov, I. In situ bottom sediment temperatures in the Siberian Arctic seas: Current state of subsea permafrost in the Kara sea vs Laptev and East Siberian seas. Mar. Petrol. Geol. 2023, 57, 106467. [Google Scholar] [CrossRef]
- Chuvilin, E.; Bukhanov, B.; Yurchenko, A.; Davletshina, D.; Shakhova, N.; Spivak, E.; Rusakov, V.; Dudarev, O.; Khaustova, N.; Tikhonova, A.; et al. In-situ temperatures and thermal properties of the East Siberian Arctic shelf sediments: Key input for understanding the dynamics of subsea permafrost. Mar. Petrol. Geol. 2022, 138, 105550. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arct. Ecol. Econ. 2021, 11, 51–66. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Sizov, O.S.; Nikonov, R.A.; Bogoyavlensky, I.V. Monitoring of the methane concentration changes in the Arctic atmosphere in 2019—2021 according to the TROPOMI spectrometer data. Arct. Ecol. Econ. 2022, 12, 304–319. (In Russian) [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Bogoyavlensky, I.V.; Nikonov, R.A. Explosive degassing of the Earth on the Yamal Peninsula and the adjacent Kara Sea. Arct. Ecol. Econ. 2024, 14, 177–191. [Google Scholar] [CrossRef]
- Lobkovsky, L.I. Seismogenic-Triggering Mechanism of Gas Emission Activizations on the Arctic Shelf and Associated Phases of Abrupt Warming. Geosciences 2020, 10, 428. [Google Scholar] [CrossRef]
- Nikishin, A.M.; Petrov, E.I.; Malyshev, N.A.; Ershova, V.P. Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: Link between geological history and geodynamics. Geodyn. Tectonophys. 2017, 8, 11–43. [Google Scholar] [CrossRef]
- Kononov, M.V.; Lobkovsky, L.I. Influence of the Upper-Mantle Convective Cell and Related Pacific Plate Subduction on Arctic Tectonics in the Late Cretaceous–Cenozoic. Geotectonics 2019, 6, 27–45. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krylov, A.A.; Rukavishnikova, D.D.; Novikov, M.A.; Baranov, B.V.; Medvedev, I.P.; Kovachev, S.A.; Lobkovsky, L.I.; Semiletov, I.P. The Main Geohazards in the Russian Sector of the Arctic Ocean. J. Mar. Sci. Eng. 2024, 12, 2209. https://doi.org/10.3390/jmse12122209
Krylov AA, Rukavishnikova DD, Novikov MA, Baranov BV, Medvedev IP, Kovachev SA, Lobkovsky LI, Semiletov IP. The Main Geohazards in the Russian Sector of the Arctic Ocean. Journal of Marine Science and Engineering. 2024; 12(12):2209. https://doi.org/10.3390/jmse12122209
Chicago/Turabian StyleKrylov, Artem A., Daria D. Rukavishnikova, Mikhail A. Novikov, Boris V. Baranov, Igor P. Medvedev, Sergey A. Kovachev, Leopold I. Lobkovsky, and Igor P. Semiletov. 2024. "The Main Geohazards in the Russian Sector of the Arctic Ocean" Journal of Marine Science and Engineering 12, no. 12: 2209. https://doi.org/10.3390/jmse12122209
APA StyleKrylov, A. A., Rukavishnikova, D. D., Novikov, M. A., Baranov, B. V., Medvedev, I. P., Kovachev, S. A., Lobkovsky, L. I., & Semiletov, I. P. (2024). The Main Geohazards in the Russian Sector of the Arctic Ocean. Journal of Marine Science and Engineering, 12(12), 2209. https://doi.org/10.3390/jmse12122209