Seabed Liquefaction Risk Assessment Based on Wave Spectrum Characteristics: A Case Study of the Yellow River Subaqueous Delta, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Observations
2.3. Analysis Methods
2.3.1. Wave Parameter
2.3.2. Wave Spectrum
2.3.3. Liquefaction Model
2.3.4. FVCOM Simulation
3. Results and Discussion
3.1. Wave Conditions
3.2. Estimation of CHC Spectrum Parameter
3.3. Wave Height Distribution in Different Return Periods
3.4. Effect of Wave Frequency on Seabed Liquefaction
3.5. Liquefaction Depth in Different Return Periods
4. Conclusions
- (1)
- The wave spectrum characteristics of different wave development stages were unique. Owing to the presence of a swell wave, the peak period decline was slower. Compared to similar wave height conditions in the wave growth stage, the wave decay stage had a greater liquefaction potential.
- (2)
- The CHC Spectrum can accurately reflect the wave characteristics of the study area, and this spectrum can be parameterized according to wave height and period.
- (3)
- The liquefaction zone was mainly distributed at water depths between 5 and 15 m. With an increase in the wave return periods, the seabed liquefaction depth increased, the liquefaction zone expanded, and the position of the maximum liquefaction depth moved to the deep-water zone. Under extreme wave conditions in 50-year return periods, the maximum depth of liquefaction exceeded 3 m. The clay content (seabed properties) was a prerequisite for liquefaction compared with water depth, and the risk of liquefaction is substantial for silty seabed with water depths greater than 15 m.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, G.; Sun, Y.; Wang, X.; Hu, G.; Song, Y. Wave-induced shallow slides and their features on the subaqueous Yellow River delta. Can. Geotech. J. 2009, 46, 1406–1417. [Google Scholar] [CrossRef]
- Tomasello, G.; Porcino, D.D. Energy-Based Pore Pressure Generation Models in Silty Sands under Earthquake Loading. Geosciences 2024, 14, 166. [Google Scholar] [CrossRef]
- Niu, J.; Xie, J.; Lin, S.; Lin, P.; Gao, F.; Zhang, J.; Cai, S. Importance of Bed Liquefaction-Induced Erosion During the Winter Wind Storm in the Yellow River Delta, China. J. Geophys. Res. Ocean. 2023, 128, e2022JC019256. [Google Scholar] [CrossRef]
- Zhu, Z.; Du, X.; Liang, B.; Wang, L.; Song, Y.; Li, P.; Fan, Y.; Bian, S.; Wang, Y.; Zhang, Y.; et al. Simulating liquefaction-induced resuspension flux in a sediment transport model. Water Res. 2024, 261, 122057. [Google Scholar] [CrossRef]
- Klammler, H.; Penko, A.M.; Staples, T.; Sheremet, A.; Calantoni, J. Observations and Modeling of Wave-Induced Burial and Sediment Entrainment: Likely Importance of Degree of Liquefaction. J. Geophys. Res. Ocean. 2021, 126, e2021JC017378. [Google Scholar] [CrossRef]
- Xu, X.; Xu, G.; Yang, J.; Xu, Z.; Ren, Y. Field observation of the wave-induced pore pressure response in a silty soil seabed. Geo-Mar. Lett. 2021, 41, 13. [Google Scholar] [CrossRef]
- Zen, K.; Yamazaki, H. Mechanism of Wave-Induced Liquefaction and Densification in Seabed. Soils Found. 1990, 30, 90–104. [Google Scholar] [CrossRef]
- Xu, J.; Dong, J.; Zhang, S.; Sun, H.; Li, G.; Niu, J.; Li, A.; Dong, P. Pore-water pressure response of a silty seabed to random wave action: Importance of low-frequency waves. Coast. Eng. 2022, 178, 104214. [Google Scholar] [CrossRef]
- Niu, J.; Xu, J.; Dong, P.; Li, G. Pore water pressure responses in silty sediment bed under random wave action. Sci. Rep. 2019, 9, 11685. [Google Scholar] [CrossRef]
- Dong, J.; Xu, J.; Li, G.; Li, A.; Zhang, S.; Niu, J.; Xu, X.; Wu, L. Experimental Study on Silty Seabed Liquefaction and Its Impact on Sediment Resuspension by Random Waves. J. Mar. Sci. Eng. 2022, 10, 437. [Google Scholar] [CrossRef]
- Bennett, R.H.; Bryant, W.R.; Dunlap, W.A.; Keller, G.H. Initial results and progress of the Mississippi delta sediment pore water pressure experiment. Marine Georesour. Geotechnol. 1976, 1, 327–335. [Google Scholar] [CrossRef]
- JTJ 213-1998; Code for Sea Port Hydrology. Ministry of Transport of the People’s Republic of China: Beijing, China, 1998. (In Chinese)
- Qi, W.-G.; Gao, F.-P. Wave induced instantaneously-liquefied soil depth in a non-cohesive seabed. Ocean. Eng. 2018, 153, 412–423. [Google Scholar] [CrossRef]
- Jeng, D.; Seymour, B.; Gao, F.; Wu, Y. Ocean waves propagating over a porous seabed: Residual and oscillatory mechanisms. Sci. China Ser. E Technol. Sci. 2007, 50, 81–89. [Google Scholar] [CrossRef]
- Jiang, M.; Pang, C.; Liu, Z.; Jiang, J. Sediment resuspension in winter in an exceptional low suspended sediment concentration area off Qinhuangdao in the Bohai Sea. Estuar. Coast. Shelf Sci. 2020, 245, 106859. [Google Scholar] [CrossRef]
- Hsu, J.R.C.; Jeng, D.S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness. Int. J. Numer. Anal. Methods Geomech. 1994, 18, 785–807. [Google Scholar] [CrossRef]
- Liu, X.; Lu, Y.; Yu, H.; Ma, L.; Li, X.; Li, W.; Zhang, H.; Bian, C. In-Situ Observation of Storm-Induced Wave-Supported Fluid Mud Occurrence in the Subaqueous Yellow River Delta. J. Geophys. Res. Ocean. 2022, 127, e2021JC018190. [Google Scholar] [CrossRef]
- Zheng, S.; Han, S.; Tan, G.; Xia, J.; Wu, B.; Wang, K.; Edmonds, D.A. Morphological adjustment of the Qingshuigou channel on the Yellow River Delta and factors controlling its avulsion. CATENA 2018, 166, 44–55. [Google Scholar] [CrossRef]
- Prior, D.B.; Suhayda, J.N.; Lu, N.Z.; Bornhold, B.D.; Keller, G.H.; Wiseman, W.J.; Wright, L.D.; Yang, Z.S. Storm wave reactivation of a submarine landslide. Nature 1989, 341, 47–50. [Google Scholar] [CrossRef]
- Richter, K.E.; Wang, P.; Ayers, J.M. Measuring Seabed Pressure: A Search for Longuet-Higgins Events. In Proceedings of the OCEANS 2021: San Diego–Porto 2021, San Diego, CA, USA, 20–23 September 2021; pp. 1–6. [Google Scholar]
- Longuet-Higgins, M.S.; Jeffreys, H. A theory of the origin of microseisms. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1950, 243, 1–35. [Google Scholar] [CrossRef]
- Xiong, J.; You, Z.-J.; Li, J.; Gao, S.; Wang, Q.; Wang, Y.P. Variations of wave parameter statistics as influenced by water depth in coastal and inner shelf areas. Coast. Eng. 2020, 159, 103714. [Google Scholar] [CrossRef]
- Chen, C.; Beardsley, R.C.; Cowles, G. An Unstructured Grid, Finite-Volume Coastal Ocean Model (FVCOM) System. Oceanography 2006, 19, 78–89. [Google Scholar] [CrossRef]
- Chen, C.; Liu, H.; Beardsley, R.C. An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Mao, M.; Xia, M. Wave–current dynamics and interactions near the two inlets of a shallow lagoon–inlet–coastal ocean system under hurricane conditions. Ocean. Model. 2018, 129, 124–144. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Amante, C.J.; Eakins, B.W. ETOPO1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; National Geophysical Data Center: Boulder, CO, USA, 2009. [Google Scholar]
- Liu, X.; Qiao, L.; Li, G.; Zhong, Y.; Miao, H.; Hu, R. Discontinuity of sediment transport from the Bohai Sea to the open sea dominated by the wind direction. Estuar. Coast. Shelf Sci. 2023, 293, 108486. [Google Scholar] [CrossRef]
- Niu, J.; Xu, J.; Li, G.; Dong, P.; Shi, J.; Qiao, L. Swell-dominated sediment re-suspension in a silty coastal seabed. Estuar. Coast. Shelf Sci. 2020, 242, 106845. [Google Scholar] [CrossRef]
- Sun, H.; Xu, J.; Zhang, S.; Li, G.; Liu, S.; Qiao, L.; Yu, Y.; Liu, X. Field observations of seabed scour dynamics in front of a seawall during winter gales. Front. Mar. Sci. 2022, 9, 1080578. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Xu, J.; Guo, L.; Li, G.; Jia, Y.; Qiao, L.; Wu, J.; Wen, M.; Zhu, C. In situ observations of hydro-sediment dynamics on the abandoned Diaokou lobe of the Yellow River Delta: Erosion mechanism and rate. Estuar. Coast. Shelf Sci. 2022, 277, 108065. [Google Scholar] [CrossRef]
- Du, X. Fine Observation of Wave-Induced Pore Water Pressure and Liquefaction Evaluation Method of Seabed Silt in Yellow River Estuary. Master’s Dissertation, The First Institute of Oceanography, MNR, Qingdao, China, 2016. [Google Scholar]
- Porcino, D.D.; Tomasello, G.; Wichtmann, T. An insight into the prediction of limiting fines content for mixtures of sand with non-plastic fines based on monotonic and cyclic tests. In Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering, Rome, Italy, 17–20 June 2019. [Google Scholar]
- Polito, C.P.; Sibley, E.L.D. Threshold fines content and behavior of sands with nonplastic silts. Can. Geotech. J. 2020, 57, 462–465. [Google Scholar] [CrossRef]
- Bouferra, R.; Shahrour, I. Influence of fines on the resistance to liquefaction of a clayey sand. Proc. Inst. Civ. Eng.-Ground Improv. 2004, 8, 1–5. [Google Scholar] [CrossRef]
- Cao, C. Prediction and Evaluation of Seabed Scour in Chengdao Sea Area Under Wave Action. Master’s Dissertation, The First Institute of Oceanography, MNR, Qingdao, China, 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Xu, J.; Tian, Z.; Qiao, L.; Luan, Z.; Zhang, Y.; Zhang, S.; Liu, X.; Li, G. Seabed Liquefaction Risk Assessment Based on Wave Spectrum Characteristics: A Case Study of the Yellow River Subaqueous Delta, China. J. Mar. Sci. Eng. 2024, 12, 2276. https://doi.org/10.3390/jmse12122276
Sun H, Xu J, Tian Z, Qiao L, Luan Z, Zhang Y, Zhang S, Liu X, Li G. Seabed Liquefaction Risk Assessment Based on Wave Spectrum Characteristics: A Case Study of the Yellow River Subaqueous Delta, China. Journal of Marine Science and Engineering. 2024; 12(12):2276. https://doi.org/10.3390/jmse12122276
Chicago/Turabian StyleSun, Hongan, Jishang Xu, Zhenhuan Tian, Lulu Qiao, Zhixing Luan, Yaxin Zhang, Shaotong Zhang, Xingmin Liu, and Guangxue Li. 2024. "Seabed Liquefaction Risk Assessment Based on Wave Spectrum Characteristics: A Case Study of the Yellow River Subaqueous Delta, China" Journal of Marine Science and Engineering 12, no. 12: 2276. https://doi.org/10.3390/jmse12122276
APA StyleSun, H., Xu, J., Tian, Z., Qiao, L., Luan, Z., Zhang, Y., Zhang, S., Liu, X., & Li, G. (2024). Seabed Liquefaction Risk Assessment Based on Wave Spectrum Characteristics: A Case Study of the Yellow River Subaqueous Delta, China. Journal of Marine Science and Engineering, 12(12), 2276. https://doi.org/10.3390/jmse12122276