Data-Independent Acquisition-Based Quantitative Proteomics Analysis of Fertile Red Eggs and Spermatozoa in Hermatypic Coral Galaxea fascicularis: Revealing Key Proteins Related to Gamete Maturation and Fertilization
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Coral and Gamete Collection
2.2. Protein Extraction and Enzymatic Hydrolysis
2.3. High-pH Reverse-Phase Separation
2.4. DDA and DIA Analyses by Nano-LC-MS/MS
2.5. Data Analysis
2.6. Bioinformatics Analysis
3. Results
3.1. Spawning Events, and Morphology and Size of Mature Fertile Gametes
3.2. Proteomics Profiles and Functional Annotation of Mature Red Eggs and Spermatozoa in G. fascicularis
3.3. Functional Analysis of DAPs in Red Eggs and Spermatozoa
3.4. Construction of a PPI
3.5. Key Proteins Involved in Gamete Maturation and Fertilization
3.6. Analysis of Protein EUPHY in G. fascicularis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, G.P.; McCormick, M.I.; Srinivasan, M.; Eagle, J.V. Coral Decline Threatens Fish Biodiversity in Marine Reserves. Proc. Natl. Acad. Sci. USA 2004, 101, 8251–8253. [Google Scholar] [CrossRef]
- Oppen, M.J.H.; Gates, R.D.; Blackall, L.L.; Cantin, N.; Chakravarti, L.J.; Chan, W.Y.; Cormick, C.; Crean, A.; Damjanovic, K.; Epstein, H.; et al. Shifting Paradigms in Restoration of the World’s Coral Reefs. Glob. Chang. Biol. 2017, 23, 3437–3448. [Google Scholar] [CrossRef]
- Wilkinson, C.R. World-Wide Coral Reef Bleaching and Mortality during 1998: A Global Climate Change Warning for the New Millennium? In Seas at the Millennium: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2000; Volume 3, pp. 43–57. [Google Scholar]
- Edwards, A.J.; Clark, S. Coral Transplantation: A Useful Management Tool or Misguided Meddling? Mar. Pollut. Bull. 1999, 37, 474–487. [Google Scholar] [CrossRef]
- Boström-Einarsson, L.; Babcock, R.C.; Bayraktarov, E.; Ceccarelli, D.; Cook, N.; Ferse, S.C.A.; Hancock, B.; Harrison, P.; Hein, M.; Shaver, E.; et al. Coral Restoration—A Systematic Review of Current Methods, Successes, Failures and Future Directions. PLoS ONE 2020, 15, e0226631. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Y.; Liang, J.; Lin, R.; Wang, D. Performance of Ecological Restoration in an Impaired Coral Reef in the Wuzhizhou Island, Sanya, China. J. Ocean. Limnol. 2021, 39, 135–147. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, W.; Liu, X.; Ren, Y.; Huang, J.; Zhu, M.; Wu, Z.; Wang, A.; Li, X. The Effect of Two Types of Grid Transplantation on Coral Growth and the In-Situ Ecological Restoration in a Fragmented Reef of the South China Sea. Ecol. Eng. 2022, 177, 106558. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, W.; Chen, R.; Rinkevich, B.; Shafir, S.; Xia, J.; Zhu, M.; Chen, R.; Wang, A.; Li, X. Framed Reef Modules: A New and Cost-effective Tool for Coral Restoration. Restor. Ecol. 2024, 32, e13997. [Google Scholar] [CrossRef]
- Omori, M. Coral Restoration Research and Technical Developments: What We Have Learned so Far. Mar. Biol. Res. 2019, 15, 377–409. [Google Scholar] [CrossRef]
- Suzuki, G.; Okada, W.; Yasutake, Y.; Yamamoto, H.; Tanita, I.; Yamashita, H.; Hayashibara, T.; Komatsu, T.; Kanyama, T.; Inoue, M.; et al. Enhancing Coral Larval Supply and Seedling Production Using a Special Bundle Collection System “Coral Larval Cradle” for Large-scale Coral Restoration. Restor. Ecol. 2020, 28, 1172–1182. [Google Scholar] [CrossRef]
- Rahman, M.S.; Lee, J.S.; Kwon, W.S.; Pang, M.G. Sperm Proteomics: Road to Male Fertility and Contraception. Int. J. Endocrinol. 2013, 2013, 360986. [Google Scholar] [CrossRef] [PubMed]
- Noda, T.; Blaha, A.; Fujihara, Y.; Gert, K.R.; Emori, C.; Deneke, V.E.; Oura, S.; Panser, K.; Lu, Y.; Berent, S.; et al. Sperm Membrane Proteins DCST1 and DCST2 Are Required for Sperm-Egg Interaction in Mice and Fish. Commun. Biol. 2022, 5, 332. [Google Scholar] [CrossRef]
- Mendoza-Porras, O.; Botwright, N.A.; McWilliam, S.M.; Cook, M.T.; Harris, J.O.; Wijffels, G.; Colgrave, M.L. Exploiting Genomic Data to Identify Proteins Involved in Abalone Reproduction. J. Proteomics 2014, 108, 337–353. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, H.; Lau, S.C.K.; Zhang, Z.; Qiu, J.W. Sperm Proteome of Mytilus Galloprovincialis: Insights into the Evolution of Fertilization Proteins in Marine Mussels. Proteomics 2015, 15, 4175–4179. [Google Scholar] [CrossRef]
- Mu, H.; Ke, S.; Zhang, D.; Zhang, Y.; Song, X.; Yu, Z.; Zhang, Y.; Qiu, J. The Sperm Proteome of the Oyster Crassostrea hongkongensis. Proteomics 2020, 20, 2000167. [Google Scholar] [CrossRef]
- Collins, B.C.; Hunter, C.L.; Liu, Y.; Schilling, B.; Rosenberger, G.; Bader, S.L.; Chan, D.W.; Gibson, B.W.; Gingras, A.-C.; Held, J.M.; et al. Multi-Laboratory Assessment of Reproducibility, Qualitative and Quantitative Performance of SWATH-Mass Spectrometry. Nat. Commun. 2017, 8, 291. [Google Scholar] [CrossRef]
- Zhu, W.; Cheng, X.; Ren, C.; Chen, J.; Zhang, Y.; Chen, Y.; Jia, X.; Wang, S.; Sun, Z.; Zhang, R.; et al. Proteomic Characterization and Comparison of Ram (Ovis aries) and Buck (Capra hircus) Spermatozoa Proteome Using a Data Independent Acquisition Mass Spectometry (DIA-MS) Approach. PLoS ONE 2020, 15, e0228656. [Google Scholar] [CrossRef]
- Pavia, R.T.B., Jr.; Estacion, J.S. Survival and Growth of Isolated Polyps of (Linnaeus 1767) on Six Kinds of Culture Substrates: Implications for Mariculture, Aquarium Culture, and Conservation. J. World Aquac. Soc. 2019, 50, 219–230. [Google Scholar] [CrossRef]
- Harrison, P. Pseudo-Gynodioecy: An Unusual Breeding System in the Scleractinian Coral Galaxea fascicularia. In Proceedings of the Sixth International Coral Reef Symposium, Townsville, Australia, 8–12 August 1988; Southern Cross University: East Lismore, Australia, 1988; pp. 699–705. [Google Scholar]
- Hayakawa, H.; Andoh, T.; Watanabe, T. Precursor Structure of Egg Proteins in the Coral Galaxea fascicularis. Biochem. Bioph. Res. Commun. 2006, 344, 173–180. [Google Scholar] [CrossRef]
- Hayakawa, H.; Nakano, Y.; Andoh, T.; Watanabe, T. Sex-Dependent Expression of mRNA Encoding a Major Egg Protein in the Gonochoric Coral Galaxea fascicularis. Coral Reefs 2005, 24, 488–494. [Google Scholar] [CrossRef]
- Hayakawa, H.; Andoh, T.; Watanabe, T. Identification of a Novel Yolk Protein in the Hermatypic Coral Galaxea fascicularis. Zool. Sci. 2007, 24, 249–255. [Google Scholar] [CrossRef]
- Harrison, P.L. Sexual Reproduction of Reef Corals and Application to Coral Restoration. In Oceanographic Processes of Coral Reefs; CRC Press: Boca Raton, FL, USA, 2024; pp. 419–437. [Google Scholar]
- Keshavmurthy, S.; Hsu, C.-M.; Kuo, C.Y.; Denis, V.; Ka Lai, J.; Fontana, S.; Hsieh, H.J.; Tsai, W.S.; Su, W.C.; Chen, A. Larval Development of Fertilized “Pseudo-Gynodioecious” Eggs Suggests a Sexual Pattern of Gynodioecy in Galaxea fascicularis (Scleractinia: Euphyllidae). Zool. Stud. 2012, 51, 143–149. [Google Scholar]
- Wei, F.; Cui, M.; Huang, W.; Wang, Y.; Liu, X.; Zeng, X.; Su, H.; Yu, K. Ex Situ Reproduction and Recruitment of Scleractinian Coral Galaxea fascicularis. Mar. Biol. 2023, 170, 30. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range Mass Accuracies and Proteome-Wide Protein Quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Bruderer, R.; Bernhardt, O.M.; Gandhi, T.; Reiter, L. High-Precision iRT Prediction in the Targeted Analysis of Data-Independent Acquisition and Its Impact on Identification and Quantitation. Proteomics 2016, 16, 2246–2256. [Google Scholar] [CrossRef]
- Choi, M.; Chang, C.Y.; Clough, T.; Broudy, D.; Killeen, T.; MacLean, B.; Vitek, O. MSstats: An R Package for Statistical Analysis of Quantitative Mass Spectrometry-Based Proteomic Experiments. Bioinformatics 2014, 30, 2524–2526. [Google Scholar] [CrossRef]
- Ou, J.; Luan, X.; Chen, H.; Zhou, K.; Wang, Z.; Wang, H.; Lv, L.; Dong, X.; Zhao, W.; Zhang, B.; et al. Transcriptome in Combination with Experimental Validation Unveils Hub Immune-Related Genes in Oriental River Prawn Macrobrachium nipponense against Spiroplasma Eriocheiris Challenge. Aquaculture 2021, 539, 736625. [Google Scholar] [CrossRef]
- Varadi, M.; Bertoni, D.; Magana, P.; Paramval, U.; Pidruchna, I.; Radhakrishnan, M.; Tsenkov, M.; Nair, S.; Mirdita, M.; Yeo, J.; et al. AlphaFold Protein Structure Database in 2024: Providing Structure Coverage for over 214 Million Protein Sequences. Nucleic Acids Res. 2024, 52, 368–375. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Shikina, S.; Chiu, Y.L.; Lee, Y.-H.; Chang, C.F. From Somatic Cells to Oocytes: A Novel Yolk Protein Produced by Ovarian Somatic Cells in a Stony Coral, Euphyllia ancora. Biol. Reprod. 2015, 93, 57. [Google Scholar] [CrossRef]
- Barton, J.A.; Willis, B.L.; Hutson, K.S. Coral Propagation: A Review of Techniques for Ornamental Trade and Reef Restoration. Rev. Aquacul. 2017, 9, 238–256. [Google Scholar] [CrossRef]
- Shlesinger, T.; Loya, Y. Sexual Reproduction of Scleractinian Corals in Mesophotic Coral Ecosystems vs. Shallow Reefs. In Mesophotic Coral Ecosystems; Loya, Y., Puglise, K.A., Bridge, T.C.L., Eds.; Coral Reefs of the World; Springer International Publishing: Cham, Switzerland, 2019; Volume 12, pp. 653–666. [Google Scholar]
- Johnston, E.C.; Counsell, C.W.W.; Sale, T.L.; Burgess, S.C.; Toonen, R.J. The Legacy of Stress: Coral Bleaching Impacts Reproduction Years Later. Funct. Ecol. 2020, 34, 2315–2325. [Google Scholar] [CrossRef]
- Albright, R.; Mason, B.; Miller, M.; Langdon, C. Ocean Acidification Compromises Recruitment Success of the Threatened Caribbean Coral Acropora palmata. Proc. Natl. Acad. Sci. USA 2010, 107, 20400–20404. [Google Scholar] [CrossRef]
- Berry, K.L.E.; Epstein, H.E.; Lewis, P.J.; Hall, N.M.; Negri, A.P. Microplastic Contamination Has Limited Effects on Coral Fertilisation and Larvae. Diversity 2019, 11, 228. [Google Scholar] [CrossRef]
- Van Etten, J.; Shumaker, A.; Mass, T.; Putnam, H.M.; Bhattacharya, D. Transcriptome Analysis Provides a Blueprint of Coral Egg and Sperm Functions. PeerJ 2020, 8, e9739. [Google Scholar] [CrossRef]
- Sun, Y.; Zou, Y.; Jin, J.; Chen, H.; Liu, Z.; Zi, Q.; Xiong, Z.; Wang, Y.; Li, Q.; Peng, J.; et al. DIA-Based Quantitative Proteomics Reveals the Protein Regulatory Networks of Floral Thermogenesis in Nelumbo nucifera. Int. J. Mol. Sci. 2021, 22, 8251. [Google Scholar] [CrossRef]
- Riddle, O. Endocrine Regulation of Reproduction. Endocrinology 1929, 13, 311–319. [Google Scholar] [CrossRef]
- Bhattacharya, S. Endocrine Control of Fish Reproduction. Curr. Sci. 1992, 63, 135–139. [Google Scholar]
- Shen, X.; Bai, X.; Luo, C.; Jiang, D.; Li, X.; Zhang, X.; Tian, Y.; Huang, Y. Quantitative Proteomic Analysis of Chicken Serum Reveals Key Proteins Affecting Follicle Development during Reproductive Phase Transitions. Poult. Sci. 2021, 100, 325–333. [Google Scholar] [CrossRef]
- Azevedo, R.O.; Alvarenga, É.R.; Fernandes, A.F.A.; Silva, M.A.; Alves, G.F.D.O.; Menezes, W.F.; Turra, E.M. Use of hCG Hormone in the Natural and Artificial Reproduction of Nile Tilapia (Oreochromis niloticus). Aquac. Res. 2021, 52, 6380–6388. [Google Scholar] [CrossRef]
- Atkinson, S.; Atkinson, M.J. Detection of Estradiol-17? During a Mass Coral Spawn. Coral Reefs 1992, 11, 33–35. [Google Scholar] [CrossRef]
- Tarrant, A.M.; Atkinson, S.; Atkinson, M.J. Estrone and Estradiol-17β Concentration in Tissue of the Scleractinian Coral, Montipora verrucosa. Comp. Biochem. Phys. A 1999, 122, 85–92. [Google Scholar] [CrossRef]
- Tarrant, A.M.; Blomquist, C.H.; Lima, P.H.; Atkinson, M.J.; Atkinson, S. Metabolism of Estrogens and Androgens by Scleractinian Corals. Comp. Biochem. Phys. B 2003, 136, 473–485. [Google Scholar] [CrossRef]
- Tarrant, A.; Atkinson, M.; Atkinson, S. Effects of Steroidal Estrogens on Coral Growth and Reproduction. Mar. Ecol. Prog. Ser. 2004, 269, 121–129. [Google Scholar] [CrossRef]
- Twan, W.H.; Wu, H.F.; Hwang, J.S.; Lee, Y.H.; Chang, C.F. Corals Have Already Evolved the Vertebrate-Type Hormone System in the Sexual Reproduction. Fish Physiol. Biochem. 2005, 31, 111–115. [Google Scholar] [CrossRef]
- Twan, W.H.; Hwang, J.S.; Chang, C.F. Sex Steroids in Scleractinian Coral, Euphyllia ancora: Implication in Mass Spawning. Biol. Reproduc. 2003, 68, 2255–2260. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.S.; Hamazato, H.; Ishii, T.; Taira, K.; Takeuchi, Y.; Takekata, H.; Isomura, N.; Takemura, A. Does Estrogen Regulate Vitellogenin Synthesis in Corals? Comp. Biochem. Phys. A 2021, 255, 110910. [Google Scholar] [CrossRef]
- Slattery, M.; Hines, G.A.; Starmer, J.; Paul, V.J. Chemical signals in gametogenesis, spawning, and larval settlement and defense of the soft coral Sinularia polydactyla. Coral Reefs 1999, 18, 75–84. [Google Scholar] [CrossRef]
- Charniauxcotton, H. Vitellogenesis and its control in Malacostracan crustacea. Am. Zool. 1985, 25, 197–206. [Google Scholar] [CrossRef]
- Ruan, Y.; Wong, N.K.; Zhang, X.; Zhu, C.; Wu, X.; Ren, C.; Luo, P.; Jiang, X.; Ji, J.; Wu, X.; et al. Vitellogenin Receptor (VgR) Mediates Oocyte Maturation and Ovarian Development in the Pacific White Shrimp (Litopenaeus vannamei). Front. Physiol. 2020, 11, 485. [Google Scholar] [CrossRef]
- Koussovi, G.; Houssou, A.M.; Daves, D.A.O.; Niass, F.; Bonou, C.A.; López Greco, L.; Montchowui, E. Yolk Resorption and Larval Development in the Brackish River Prawn Macrobrachium macrobrachion under Laboratory Conditions: Perspectives for Aquaculture. J. World Aquac. Soc. 2023, 54, 1659–1676. [Google Scholar] [CrossRef]
- Wahli, W.; Dawid, I.; Ryffel, G.; Weber, R. Vitellogenesis and the Vitellogenin Gene Family. Science 1981, 212, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Shikina, S.; Chen, C.J.; Chung, Y.J.; Shao, Z.F.; Liou, J.Y.; Tseng, H.P.; Lee, Y.H.; Chang, C.F. Yolk Formation in a Stony Coral Euphyllia ancora (Cnidaria, Anthozoa): Insight Into the Evolution of Vitellogenesis in Nonbilaterian Animals. Endocrinology 2013, 154, 3447–3459. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Takeda, M. Insect Vitellogenin/Lipophorin Receptors: Molecular Structures, Role in Oogenesis, and Regulatory Mechanisms. J. Insect. Physiol. 2009, 55, 88–104. [Google Scholar] [CrossRef]
- Mananos, E.; Nunez, R.J.; Le Menn, F.; Zanuy, S.; Carillo, M. Identification of Vitellogenin Receptors in the Ovary of a Teleost Fish, the Mediterranean Sea Bass (Dicentrarchus labrax). Reprod. Nutr. Dev. 1997, 37, 51–61. [Google Scholar] [CrossRef][Green Version]
- Lancaster, P.; Tyler, C. Developmental Expression and Modulation of the Vitellogenin Receptor in Ovarian Follicles of the Rainbow Trout, Oncorhynchus mykiss. J. Exp. Zool. 1994, 269, 458–466. [Google Scholar] [CrossRef]
- Alieva, N.O.; Konzen, K.A.; Field, S.F.; Meleshkevitch, E.A.; Hunt, M.E.; Beltran-Ramirez, V.; Miller, D.J.; Wiedenmann, J.; Salih, A.; Matz, M.V. Diversity and Evolution of Coral Fluorescent Proteins. PLoS ONE 2008, 3, e2680. [Google Scholar] [CrossRef]
- Hirose, M.; Kinzie, R.; Hidaka, M. Early Development of Zooxanthella-Containing Eggs of the Corals Pocillopora verrucosa and P. eydouxi with Special Reference to the Distribution of Zooxanthellae. Biol. Bull. 2000, 199, 68–75. [Google Scholar] [CrossRef]
- Padilla-Gamiño, J.L.; Bidigare, R.R.; Barshis, D.J.; Alamaru, A.; Hédouin, L.; Hernández-Pech, X.; Kandel, F.; Leon Soon, S.; Roth, M.S.; Rodrigues, L.J.; et al. Are All Eggs Created Equal? A Case Study from the Hawaiian Reef-Building Coral Montipora capitata. Coral Reefs 2013, 32, 137–152. [Google Scholar] [CrossRef]
- Shikina, S.; Chiu, Y.L.; Chung, Y.J.; Chen, C.J.; Lee, Y.H.; Chang, C.F. Oocytes Express an Endogenous Red Fluorescent Protein in a Stony Coral, Euphyllia ancora: A Potential Involvement in Coral Oogenesis. Sci. Rep. 2016, 6, 25868. [Google Scholar] [CrossRef]
- Chu, D.; Shakes, D. Spermatogenesis. Adv. Exp. Med. Biol. 2013, 757, 171–203. [Google Scholar] [PubMed]
- Kim, E.J.; Kim, S.J.; Park, C.J.; Nam, Y.K. Characterization of Testis-Specific Serine/Threonine Kinase 1-like (TSSK1-like) Gene and Expression Patterns in Diploid and Triploid Pacific Abalone (Haliotis discus hannai; Gastropoda; Mollusca) Males. PLoS ONE 2019, 14, e0226022. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Kong, L.F.; Yu, R.; Yu, H.; Li, Q. Characterization, Expression, and Functional Analysis of Testis-Specific Serine/Threonine Kinase 1 (Tssk1) in the Pen Shell Atrina pectinata. Inverteb. Reprod. Dev. 2016, 60, 118–125. [Google Scholar] [CrossRef]
- Wang, P.; Huo, H.L.; Wang, S.Y.; Miao, Y.W.; Zhang, Y.Y.; Zhang, Q.L.; Li, F.Q.; Liu, L.X.; Li, W.Z.; Zeng, Y.Z.; et al. Cloning, Sequence Characterization, and Expression Patterns of Members of the Porcine TSSK Family. Genet. Mol. Res. 2015, 14, 14908–14919. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wei, Y.; Fu, G.; Li, H.; Saiyin, H.; Lin, G.; Wang, Z.; Chen, S.; Yu, L. Tssk4 Is Essential for Maintaining the Structural Integrity of Sperm Flagellum. Mol. Hum. Reprod. 2015, 21, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Shang, P.; Hoogerbrugge, J.; Baarends, W.M.; Grootegoed, J.A. Evolution of Testis-specific Kinases TSSK 1B and TSSK 2 in Primates. Andrology 2013, 1, 160–168. [Google Scholar] [CrossRef]
- Xu, B.; Hao, Z.; Jha, K.N.; Zhang, Z.; Urekar, C.; Digilio, L.; Pulido, S.; Strauss, J.F., III; Flickinger, C.J.; Herr, J.C. Targeted Deletion of Tssk1 and 2 Causes Male Infertility Due to Haploinsufficiency. Dev. Biol. 2008, 319, 211–222. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Zhou, Z.; Lin, C.; Wei, J.; Qin, Y.; Xiang, Z.; Ma, H.; Zhang, Y.; Zhang, Y.; et al. Comparative Transcriptome Analysis of Three Gonadal Development Stages Reveals Potential Genes Involved in Gametogenesis of the Fluted Giant Clam (Tridacna squamosa). BMC Genom. 2020, 21, 872. [Google Scholar] [CrossRef]
- Xue, X.; Zhang, L.; Li, Y.; Wei, H.; Wu, S.; Liu, T.; Liu, L.; Xing, Q.; Wang, S.; Bao, Z. Expression of the Testis-Specific Serine/Threonine Kinases Suggests Their Role in Spermiogenesis of Bay Scallop Argopecten irradians. Front. Physiol. 2021, 12, 657559. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Iguchi, A.; Takemura, A. Roles of Calmodulin and Calcium/Calmodulin-Dependent Protein Kinase in Flagellar Motility Regulation in the Coral Acropora digitifera. Mar. Biotechnol. 2008, 11, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Nishikawa, A.; Nakajima, A.; Iguchi, A.; Sakai, K.; Takemura, A.; Okuno, M. Eggs Regulate Sperm Flagellar Motility Initiation, Chemotaxis and Inhibition in the Coral Acropora digitifera, A. gemmifera and A. tenuis. J. Exp. Biol. 2006, 22, 4574–4579. [Google Scholar] [CrossRef] [PubMed]
- Nakachi, M.; Nakajima, A.; Nomura, M.; Yonezawa, K.; Ueno, K.; Endo, T.; Inaba, K. Proteomic Profiling Reveals Compartment-specific, Novel Functions of Ascidian Sperm Proteins. Mol. Reprod. Dev. 2011, 78, 529–549. [Google Scholar] [CrossRef]
Protein_ID | Swissprot Accession | Gene Symbol | Log2 FC | Protein Name |
---|---|---|---|---|
TRINITY_DN2957_c0_g1_i4-Sp | Q9BXT4 | TDRD1 | 3.64 | Tudor domain-containing protein 1 |
TRINITY_DN210_c0_g1_i1-Oc | O60671 | RAD1 | 1.59 | Cell cycle checkpoint protein RAD1 |
TRINITY_DN2472_c0_g1_i1-Oc | Q8K396 | MND1 | 3.17 | Meiotic nuclear division protein 1 homolog |
TRINITY_DN1390_c1_g1_i1-Oc | Q9DGA5 | CDK1 | 2.25 | Cyclin-dependent kinase 1 |
TRINITY_DN15566_c0_g1_i1-Sp | P50613 | CDK7 | 2.69 | Cyclin-dependent kinase 7 |
TRINITY_DN3082_c0_g2_i1-Oc | P43450 | CDK2 | 1.37 | Cyclin-dependent kinase 2 |
TRINITY_DN1611_c0_g1_i1-Oc | Q00534 | CDK6 | 2.28 | Cyclin-dependent kinase 6 |
TRINITY_DN12844_c0_g2_i1-Sp | Q62623 | CDC20 | 2.72 | Cell division cycle protein 20 homolog |
TRINITY_DN1422_c0_g1_i1-Oc | O43683 | BUB1 | 2.82 | Mitotic checkpoint serine/threonine-protein kinase BUB1-like |
TRINITY_DN13050_c0_g1_i1-Oc | O43684 | BUB3 | 3.13 | Mitotic checkpoint protein BUB3 |
TRINITY_DN12_c0_g1_i1-Oc | P39963 | CYCB | 2.75 | G2/mitotic-specific cyclin-B |
TRINITY_DN10269_c0_g1_i2-Sp | Q95P04 | RFP | 2.33 | Red fluorescent protein |
TRINITY_DN1316_c0_g1_i1-Oc | Q9JMB7 | PIWI1 | 3.02 | Piwi-like protein 1 |
TRINITY_DN3806_c0_g1_i1-Sp | Q9VHP0 | DDX3 | 3.48 | ATP-dependent RNA helicase bel |
TRINITY_DN808_c0_g1_i1-Sp | P61258 | PCNA | 2.48 | Proliferating cell nuclear antigen |
TRINITY_DN892_c0_g1_i2-Sp | Q90243 | VG1 | 6.06 | Vitellogenin (Fragment) |
TRINITY_DN9308_c0_g2_i1-Oc | Q94637 | VG3 | 9.58 | Vitellogenin |
TRINITY_DN821_c0_g1_i5-Oc | A2RUV0 | NOTC1 | 7.70 | Neurogenic locus notch homolog protein 1 (EUPHY) |
TRINITY_DN17701_c0_g1_i1-Oc | B8VIU6 | EP | 3.64 | Egg protein |
TRINITY_DN17981_c0_g1_i1-Oc | P98157 | LRP1 | * | Low-density lipoprotein receptor-related protein 1 |
TRINITY_DN26695_c0_g1_i1-Sp | Q07954 | PLRP1 | 1.92 | Prolow-density lipoprotein receptor-related protein 1 |
TRINITY_DN26695_c0_g2_i1-Sp | Q8VI56 | LRP4 | 3.87 | Low-density lipoprotein receptor-related protein 4 |
TRINITY_DN18356_c0_g1_i1-Oc | G8HTB6 | ZP | 4.72 | ZP domain-containing protein |
TRINITY_DN3598_c0_g1_i12-Sp | P38529 | HSF1 | 1.52 | Heat shock factor protein 1 |
TRINITY_DN685_c0_g1_i1-Sp | O02705 | HS90A | 2.36 | Heat shock protein HSP 90-alpha |
TRINITY_DN4812_c0_g1_i1-Sp | Q3MSQ8 | DDX4 | 3.23 | Probable ATP-dependent RNA helicase DDX4 |
TRINITY_DN1577_c0_g1_i1-Oc | Q93105 | INSR | * | Insulin-like receptor |
TRINITY_DN2507_c0_g1_i1-Oc | Q8AYK6 | WEE1 | 3.22 | Wee1-like protein kinase 1-A |
TRINITY_DN884_c0_g1_i7-Sp | P05556 | ITB1 | 1.10 | Integrin beta-1 |
TRINITY_DN2904_c0_g1_i1-Sp | A7S338 | LIS1 | 1.85 | lissencephaly-1 homolog |
Protein_ID | Swissprot Accession | Gene Symbol | Log2 FC | Protein Name |
---|---|---|---|---|
TRINITY_DN16925_c0_g1_i2-Sp | Q3SZW1 | TSSK1 | * | Testis-specific serine/threonine-protein kinase 1 |
TRINITY_DN8133_c1_g1_i1-Sp | O54863 | TSSK2 | * | Testis-specific serine/threonine-protein kinase 2 |
TRINITY_DN62707_c0_g1_i1-Sp | Q9D411 | TSSK4 | * | Testis-specific serine/threonine-protein kinase 4 |
TRINITY_DN2043_c0_g2_i1-Sp | Q9JLI7 | SPAG6 | −6.23 | Sperm-associated antigen 6 |
TRINITY_DN2182_c0_g1_i1-Oc | Q3V0Q6 | SPAG8 | −8.38 | Sperm-associated antigen 8 |
TRINITY_DN10173_c0_g1_i1-Oc | Q8K450 | SPAG16 | −3.61 | Sperm-associated antigen 16 |
TRINITY_DN2541_c0_g1_i1-Oc | Q6Q759 | SPAG17 | −4.34 | Sperm-associated antigen 17 |
TRINITY_DN1595_c0_g1_i3-Sp | Q6DMN8 | SPATA4 | −4.42 | Spermatogenesis-associated protein 4 |
TRINITY_DN643_c0_g1_i2-Oc | Q9NWH7 | SPATA6 | −5.29 | Spermatogenesis-associated protein 6 |
TRINITY_DN6811_c0_g2_i2-Sp | Q9D552 | SPATA17 | * | Spermatogenesis-associated protein 17 |
TRINITY_DN4634_c0_g4_i3-Sp | Q8TBZ9 | TEX47 | −6.37 | Testis-expressed protein 47 |
TRINITY_DN129_c0_g1_i2-Oc | Q4R642 | TCTE1 | −3.91 | T-complex-associated testis-expressed protein 1 |
TRINITY_DN295_c0_g1_i7-Sp | Q08CI4 | CCYL1 | −1.34 | Cyclin-Y-like protein 1 |
TRINITY_DN11196_c0_g1_i1-Oc | Q9R095 | SPEF2 | −4.13 | Sperm flagellar protein 2 |
TRINITY_DN16400_c0_g1_i2-Sp | Q0IH24 | SPEF1 | −4.27 | Sperm flagellar protein 1 |
TRINITY_DN37130_c0_g1_i1-Sp | Q3UGF1 | WDR19 | −3.05 | WD repeat-containing protein 19 |
TRINITY_DN1108_c0_g1_i1-Oc | Q969V4 | TEKT1 | −7.19 | Tektin-1 |
TRINITY_DN1471_c0_g1_i1-Sp | Q9UIF3 | TEKT2 | * | Tektin-2 |
TRINITY_DN13549_c0_g1_i1-Oc | Q63164 | DYH1 | −5.13 | Dynein heavy chain 1, axonemal |
TRINITY_DN14153_c0_g3_i1-Sp | Q9P225 | DYH2 | −5.38 | Dynein heavy chain 2, axonemal |
TRINITY_DN1745_c0_g1_i1-Oc | Q9CQ46 | EFCAB2 | −4.17 | EF-hand calcium-binding domain-containing protein 2 |
TRINITY_DN2971_c0_g1_i1-Sp | Q2KIU7 | RSPH9 | −4.45 | Radial spoke head protein 9 homolog |
TRINITY_DN140_c0_g5_i1-Sp | P92177 | YWHAE | −1.45 | 14-3-3 protein epsilon |
TRINITY_DN3137_c0_g1_i17-Sp | P62332 | ARF6 | −1.31 | ADP-ribosylation factor 6 |
TRINITY_DN3184_c0_g1_i1-Sp | O35594 | ITF81 | −3.76 | Intraflagellar transport protein 81 homolog |
TRINITY_DN11002_c0_g2_i1-Sp | EFHC1 | Q5JVL4 | −6.40 | EF-hand domain-containing protein 1-like |
TRINITY_DN33226_c0_g1_i1-Sp | EFHC2 | Q32TF8 | −5.32 | EF-hand domain-containing family member C2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Ke, J.; Zheng, L.; Mo, S.; Liu, X.; Zhao, H.; Zhu, W.; Li, X. Data-Independent Acquisition-Based Quantitative Proteomics Analysis of Fertile Red Eggs and Spermatozoa in Hermatypic Coral Galaxea fascicularis: Revealing Key Proteins Related to Gamete Maturation and Fertilization. J. Mar. Sci. Eng. 2024, 12, 2341. https://doi.org/10.3390/jmse12122341
Zhou Y, Ke J, Zheng L, Mo S, Liu X, Zhao H, Zhu W, Li X. Data-Independent Acquisition-Based Quantitative Proteomics Analysis of Fertile Red Eggs and Spermatozoa in Hermatypic Coral Galaxea fascicularis: Revealing Key Proteins Related to Gamete Maturation and Fertilization. Journal of Marine Science and Engineering. 2024; 12(12):2341. https://doi.org/10.3390/jmse12122341
Chicago/Turabian StyleZhou, Yinyin, Jingzhao Ke, Lingyu Zheng, Shaoyang Mo, Xiangbo Liu, He Zhao, Wentao Zhu, and Xiubao Li. 2024. "Data-Independent Acquisition-Based Quantitative Proteomics Analysis of Fertile Red Eggs and Spermatozoa in Hermatypic Coral Galaxea fascicularis: Revealing Key Proteins Related to Gamete Maturation and Fertilization" Journal of Marine Science and Engineering 12, no. 12: 2341. https://doi.org/10.3390/jmse12122341
APA StyleZhou, Y., Ke, J., Zheng, L., Mo, S., Liu, X., Zhao, H., Zhu, W., & Li, X. (2024). Data-Independent Acquisition-Based Quantitative Proteomics Analysis of Fertile Red Eggs and Spermatozoa in Hermatypic Coral Galaxea fascicularis: Revealing Key Proteins Related to Gamete Maturation and Fertilization. Journal of Marine Science and Engineering, 12(12), 2341. https://doi.org/10.3390/jmse12122341