The Mediterranean Zoanthid Parazoanthus axinellae as a Novel Source of Antimicrobial Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Isolation of Cnidocyst
2.3. Lysozyme-like Activity
2.4. Tested Microorganisms
2.5. Antimicrobial Activity
2.6. Scanning Electron Microscopy
2.7. Statistical Analysis
3. Results
3.1. Cnidarian Sample Characterization
3.2. Lysozyme-like Activity
3.3. Antibacterial Activity
3.4. Characterization of Antibacterial Activity in P. axinellae Extract
Dose–Response Curves
3.5. Effect of Temperature on Antibacterial Activity
3.6. Time Course of Antibacterial Activity
3.7. Scanning Electron Microscope (SEM)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rocha, J.; Peixe, L.; Gomes, N.C.; Calado, R. Cnidarians as a source of new marine bioactive compounds—An overview of the last decade and future steps for bioprospecting. Mar. Drugs 2011, 9, 1860–1886. [Google Scholar] [CrossRef]
- Stabili, L.; Rizzo, L.; Caprioli, R.; Leone, A.; Piraino, S. Jellyfish bioprospecting in the Mediterranean Sea: Antioxidant and lysozyme-like activities from Aurelia coerulea (Cnidaria, Scyphozoa) extracts. Mar. Drugs 2021, 19, 619. [Google Scholar] [CrossRef]
- Jain, R.; Sonawane, S.; Mandrekar, N. Marine organisms: Potential source for drug discovery. Curr. Sci. 2008, 94, 292. Available online: https://www.currentscience.ac.in/Volumes/94/03/0292.pdf (accessed on 1 January 2023).
- Bhakuni, D.S.; Rawat, D.S. Bioactive Marine Natural Products; Springer Science & Business Media: Dordrecht, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2022, 39, 1122–1171. [Google Scholar] [CrossRef]
- Stabili, L.; Fraschetti, S.; Acquaviva, M.I.; Cavallo, R.A.; De Pascali, S.A.; Fanizzi, F.P.; Gerardi, C.; Narracci, M.; Rizzo, L. The potential exploitation of the Mediterranean invasive alga Caulerpa cylindracea: Can the invasion be transformed into a gain? Mar. Drugs 2016, 14, 210. [Google Scholar] [CrossRef]
- Stabili, L.; Acquaviva, M.I.; Cecere, E.; Gerardi, C.; Petrocelli, A.; Fanizzi, F.P.; Angilè, F.; Rizzo, L. Screening of Undaria pinnatifida (Laminariales, Phaeophyceae) lipidic extract as a new potential source of antibacterial and antioxidant compounds. J. Mar. Sci. Eng. 2023, 11, 2072. [Google Scholar] [CrossRef]
- Thawabteh, A.M.; Swaileh, Z.; Ammar, M.; Jaghama, W.; Yousef, M.; Karaman, R.; Bufo, S.A.; Scrano, L. Antifungal and antibacterial activities of isolated marine compounds. Toxins 2023, 15, 93. [Google Scholar] [CrossRef] [PubMed]
- Fusetani, N. Biotechnological potential of marine natural products. Pure Appl. Chem. 2010, 82, 17–26. [Google Scholar] [CrossRef]
- Shehzad, A.; Zahid, A.; Latif, A.; Amir, R.M.; Suleria, H.A.R. Marine foods: Nutritional significance and their industrial applications. In Technological Processes for Marine Foods, from Water to Fork: Bioactive Compounds, Industrial Applications, and Genomics; CRC Press: Boca Raton, FL, USA, 2019; Volume 289. [Google Scholar] [CrossRef]
- Glaser, K.B.; Mayer, A.M. A renaissance in marine pharmacology: From preclinical curiosity to clinical reality. Biochem. Pharmacol. 2009, 78, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.L.; Ding, Y.F.; Zhang, W.; Lin, H.W. Chemical and biological diversity of new natural products from marine sponges: A review (2009–2018). Mar. Life Sci. Technol. 2022, 4, 356–372. [Google Scholar] [CrossRef] [PubMed]
- Guryanova, S.V.; Balandin, S.V.; Belogurova-Ovchinnikova, O.Y.; Ovchinnikova, T.V. Marine invertebrate antimicrobial peptides and their potential as novel peptide antibiotics. Mar. Drugs 2023, 21, 503. [Google Scholar] [CrossRef]
- Daly, M.; Brugler, M.R.; Cartwright, P.; Collins, A.G.; Dawson, M.N.; Fautin, D.G.; France, S.C.; McFadden, C.S.; Opresko, D.M.; Rodriguez, E.; et al. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 2007, 1668, 127–182. [Google Scholar] [CrossRef]
- Parisi, M.G.; Parrinello, D.; Stabili, L.; Cammarata, M. Cnidarian immunity and the repertoire of defense mechanisms in anthozoans. Biology 2020, 9, 283. [Google Scholar] [CrossRef]
- Boero, F. Review of Jellyfish Blooms in the Mediterranean and Black Sea; No. 92.; Food and Agriculture Organisation: Rome, Italy, 2013. [Google Scholar] [CrossRef]
- Riisgård, H.U.; Madsen, C.V.; Barth-Jensen, C.; Purcell, J.E. Population dynamics and zooplankton-predation impact of the indigenous scyphozoan Aurelia aurita and the invasive ctenophore Mnemiopsis leidyi in Limfjorden (Denmark). Aquat. Invasion 2012, 7, 147–162. [Google Scholar] [CrossRef]
- Hashim, A.R.; Kamaruddin, S.A.; Buyong, F.; Mat Nazir, E.N.; Che Ismail, C.Z.; Tajam, J.; Abdullah, A.L.; Azis, T.M.F.; Anscelly, A. Jellyfish Blooming: Are We Responsible? In Proceedings of the ICAN International Virtual Conference 2022 (IIVC 2022) Proceedings—Navigating the VUCA World: Harnessing the Role of Industry Linkages, Community Development and Alumni Network in Academia, Arau, Malaysia, 18 August 2022; pp. 51–60. [Google Scholar]
- Kennerley, A.; Wood, L.E.; Luisetti, T.; Ferrini, S.; Lorenzoni, I. Economic impacts of jellyfish blooms on coastal recreation in a UK coastal town and potential management options. Ocean Coast. Manag. 2022, 227, 106284. [Google Scholar] [CrossRef]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol. 2021, 11, 668632. [Google Scholar] [CrossRef]
- Hoffmann, J.A.; Kafatos, F.C.; Janeway Jr, C.A.; Ezekowitz, R.A.B. Phylogenetic perspectives in innate immunity. Science 1999, 284, 1313–1318. [Google Scholar] [CrossRef]
- Bosch, T.C.G. The path less explored: Innate immune reactions in cnidarians. In Innate Immunity of Plants, Animals, and Humans; Heine, H., Ed.; Nucleic Acids and Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 27–42. [Google Scholar] [CrossRef]
- Kim, K. Antimicrobial activity in gorgonian corals (Coelenterata: Octocorallia). Coral Reefs 1994, 13, 75–80. [Google Scholar] [CrossRef]
- Barresi, G.; di Carlo, E.; Trapani, M.R.; Parisi, M.G.; Chille, C.; Mule, M.F.; Cammarata, M.; Palla, F. Marine organisms as source of bioactive molecules applied in restoration projects. Herit. Sci. 2015, 3, 17. [Google Scholar] [CrossRef]
- Phillips, D.C. The three-dimensional structure of an enzyme molecule. Sci. Am. 1966, 215, 78–90. [Google Scholar] [CrossRef]
- Sava, G. Pharmacological aspects and therapeutic applications of lysozymes. Exs 1996, 75, 433–449. [Google Scholar] [CrossRef]
- Stabili, L.; Schirosi, R.; Parisi, M.G.; Piraino, S.; Cammarata, M. The Mucus of Actinia equina (Anthozoa, Cnidaria): An Unexplored Resource for Potential Applicative Purposes. Mar. Drugs 2015, 13, 5276–5296. [Google Scholar] [CrossRef]
- Stabili, L.; Rizzo, L.; Fanizzi, F.P.; Angilè, F.; Del Coco, L.; Girelli, C.R.; Lomartire, S.; Piraino, S.; Basso, L. The jellyfish Rhizostoma pulmo (Cnidaria): Biochemical composition of ovaries and antibacterial lysozyme-like activity of the oocyte lysate. Mar. Drugs 2019, 17, 17. [Google Scholar] [CrossRef]
- Stabili, L.; Rizzo, L.; Basso, L.; Marzano, M.; Fosso, B.; Pesole, G.; Piraino, S. The microbial community associated with Rhizostoma pulmo: Ecological significance and potential consequences for marine organisms and human health. Mar. Drugs 2020, 18, 437. [Google Scholar] [CrossRef]
- Basso, L.; Rizzo, L.; Marzano, M.; Intranuovo, M.; Fosso, B.; Pesole, G.; Piraino, S.; Stabili, L. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). Sci. Total Environ. 2019, 692, 305–318. [Google Scholar] [CrossRef]
- Cachet, N.; Genta-Jouve, G.; Ivanisevic, J.; Chevaldonné, P.; Sinniger, F.; Culioli, G.; Pérez, T.; Thomas, O.P. Metabolomic profiling reveals deep chemical divergence between two morphotypes of the zoanthid Parazoanthus axinellae. Sci. Rep. 2015, 5, 8282. [Google Scholar] [CrossRef]
- Cariello, L.; Crescenzi, S.; Prota, G.; Capasso, S.; Giordano, F.; Mazzarella, L. Zoanthoxanthin, a natural 1,3,5,7-tetraazacyclopent[f]azulene from Parazoanthus axinellae. Tetrahedron 1974, 30, 3281–3287. [Google Scholar] [CrossRef]
- Cariello, L.; Crescenzi, S.; Prota, G.; Zanetti, L. New zoanthoxanthins from the Mediterranean zoanthid Parazoanthus axinellae. Experientia 1974, 30, 849–850. [Google Scholar] [CrossRef]
- Cariello, L.; Crescenzi, S.; Prota, G.; Giordano, F.; Mazzarella, L. Zoanthoxanthin, a heteroaromatic base from Parazoanthus axinellae (Zoantharia). Structure confirmation by x-ray crystallography. J. Chem. Soc. Chem. Commun. 1973, 3, 99–100. [Google Scholar] [CrossRef]
- Cachet, N.; Genta-Jouve, G.; Regalado, E.L.; Mokrini, R.; Amade, P.; Culioli, G.; Thomas, O.P. Parazoanthines A-E, hydantoin alkaloids from the mediterranean sea anemone Parazoanthus axinellae. J. Nat. Prod. 2009, 72, 1612–1615. [Google Scholar] [CrossRef]
- David, C.N.; Ozbek, S.; Adamczyk, P.; Meier, S.; Pauly, B.; Chapman, J.; Hwang, J.S.; Gojobori, T.; Holstein, T.W. Evolution of complex structures: Minicollagens shape the cnidarian nematocyst. Trends Genet. 2008, 24, 431–438. [Google Scholar] [CrossRef]
- Nuchter, T.; Benoit, M.; Engel, U.; Ozbek, S.; Holstein, T.W. Nanosecond-scale kinetics of nematocyst discharge. Curr. Biol. 2006, 16, R316–R318. [Google Scholar] [CrossRef]
- Avian, M.; Del Negro, P.; Sandrini, L.R. A comparative analysis of nematocysts in Pelagia noctiluca and Rhizostoma pulmo from the North Adriatic Sea. Hydrobiologia 1991, 216, 615–621. [Google Scholar] [CrossRef]
- Manzari, C.; Fosso, B.; Marzano, M.; Annese, A.; Caprioli, R.; D’Erchia, A.M.; Gissi, C.; Intranuovo, M.; Picardi, E.; Santamaria, M.; et al. The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy. Biol. Invasions 2015, 17, 923–940. [Google Scholar] [CrossRef]
- Canicatti, C.; Roch, P. Studies on Holothuria polii (Echinodermata) antibacterial proteins. I. Evidence for and activity of a coelomocyte lysozyme. Experientia 1989, 45, 756–759. [Google Scholar] [CrossRef]
- Stabili, L.; Gravili, C.; Tredici, S.M.; Piraino, S.; Talà, A.; Boero, F.; Alifano, P. Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb. Ecol. 2008, 56, 625–636. [Google Scholar] [CrossRef]
- Rizzo, L.; Fraschetti, S.; Alifano, P.; Pizzolante, G.; Stabili, L. The alien species Caulerpa cylindracea and its associated bacteria in the Mediterranean Sea. Mar. Biol. 2016, 163, 4. [Google Scholar] [CrossRef]
- Rizzo, L.; Fraschetti, S.; Alifano, P.; Tredici, M.S.; Stabili, L. Association of Vibrio community with the Atlantic Mediterranean invasive alga Caulerpa cylindracea. J. Exp. Mar. Biol. Ecol. 2016, 475, 129–136. [Google Scholar] [CrossRef]
- Boman, H.G.; Nilson-Faye, I.; Paul, K.; Raswson, T., Jr. Insect immunity. 1. Characteristics of an inolcible cell-free antibacterial reaction in hemolymph of Semie Cynthie pupal. Immunity 1974, 10, 136–145. [Google Scholar] [CrossRef]
- Anderson, M.; Braak, C.T. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Simul. 2003, 73, 85–113. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2015. [Google Scholar]
- Bashevkin, S.M.; Morgan, S.G. Predation and competition. Nat. Hist. Crustac. 2020, 7, 360–382. [Google Scholar] [CrossRef]
- Abrams, P.A. Adaptive responses of predators to prey and prey to predators; the failure of the arms race analogy. Evolution 1986, 40, 1229–1247. [Google Scholar] [CrossRef]
- Oppegard, S.C.; Anderson, P.A.; Eddington, D.T. Puncture mechanics of cnidarian cnidocysts: A natural actuator. J. Biol. Eng. 2009, 3, 17. [Google Scholar] [CrossRef]
- Trapani, M.R.; Parisi, M.G.; Toubiana, M.; Coquet, L.; Jouenne, T.; Roch, P.; Cammarata, M. First evidence of antimicrobial activity of neurotoxin 2 from Anemonia sulcata (Cnidaria). Invertebr. Surviv. J. 2014, 11, 182–191. [Google Scholar] [CrossRef]
- Hirigoyenberry, F.; Lassegues, M.; Roch, P. Antibacterial activity of Eisenia fetida andrei coelomic fluid: Immunological study of the two major antibacterial proteins. J. Invertebr. Pathol. 1992, 59, 69–74. [Google Scholar] [CrossRef]
- Stabili, L.; Pagliara, P.; Roch, P. Antibacterial activity in the coelomocytes of the sea urchin Paracentrotus lividus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1996, 113, 639–644. [Google Scholar] [CrossRef]
- Li, H.; Parisi, M.G.; Parrinello, N.; Cammarata, M.; Roch, P. Molluscan antimicrobial peptides, a review from activity-based evidences to computer-assisted sequences. Invertebr. Surviv. J. 2011, 8, 85–97. Available online: https://www.isj.unimore.it/index.php/ISJ/article/view/239 (accessed on 1 January 2023).
- Anderluh, G.; Maček, P. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 2002, 40, 111–124. [Google Scholar] [CrossRef]
- Kulma, M.; Anderluh, G. Beyond pore formation: Reorganization of the plasma membrane induced by pore-forming proteins. Cell. Mol. Life Sci. 2021, 78, 6229–6249. [Google Scholar] [CrossRef]
- Yap, W.Y.; Hwang, J.S. Response of cellular innate immunity to cnidarian pore-forming toxins. Molecules 2018, 23, 2537. [Google Scholar] [CrossRef]
- Rojko, N.; Dalla Serra, M.; Maček, P.; Anderluh, G. Pore formation by actinoporins, cytolysins from sea anemones. Biochim. Biophys. Acta (BBA)-Biomembr. 2016, 1858, 446–456. [Google Scholar] [CrossRef]
- Kristan, K.Č.; Viero, G.; Dalla Serra, M.; Maček, P.; Anderluh, G. Molecular mechanism of pore formation by actinoporins. Toxicon 2009, 54, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Herndl, G.J.; Velimirov, B. Bacteria in the coelenteron of Anthozoa: Control of coelenteric bacterial density by the coelenteric fluid. J. Exp. Mar. Biol. Ecol. 1985, 93, 115–130. [Google Scholar] [CrossRef]
- Stabili, L.; Parisi, M.G.; Parrinello, D.; Cammarata, M. Cnidarian interaction with microbial communities: From aid to animal’s health to rejection responses. Mar. Drugs 2018, 16, 296. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, Y.I. On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol. Oceanogr. 1973, 18, 380–386. [Google Scholar] [CrossRef]
- Burkholder, P.R. The ecology of marine antibiotics and coral reefs. Biol. Geol. Coral Reefs 1973, 2, 117–182. [Google Scholar] [CrossRef]
- Lauritano, C.; Ianora, A. Chemical defense in marine organisms. Mar. Drugs 2020, 18, 518. [Google Scholar] [CrossRef]
- Bachère, E.; Rosa, R.D.; Schmitt, P.; Poirier, A.C.; Merou, N.; Charrière, G.M.; Destoumieux-Garzón, D. The new insights into the oyster antimicrobial defense: Cellular, molecular and genetic view. Fish Shellfish Immunol. 2015, 46, 50–64. [Google Scholar] [CrossRef]
- Patrzykat, A.; Douglas, S.E. Gone gene fishing: How to catch novel marine antimicrobials. Trends Biotechnol. 2003, 21, 362–369. [Google Scholar] [CrossRef]
- Zhang, X.H.; He, X.; Austin, B. Vibrio harveyi: A serious pathogen of fish and invertebrates in mariculture. Mar. Life Sci. Technol. 2020, 2, 231–245. [Google Scholar] [CrossRef]
- Austin, B.; Zhang, X.H. Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 2006, 43, 119–124. [Google Scholar] [CrossRef]
- Roux, F.L.; Wegner, K.M.; Baker-Austin, C.; Vezzulli, L.; Osorio, C.R.; Amaro, C.; Ritchie, J.M.; Defoirdt, T.; Destoumieux-Garzón, D.; Blokesch, M.; et al. The emergence of Vibrio pathogens in Europe: Ecology, evolution, and pathogenesis (Paris, 11–12th March 2015). Front. Microbiol. 2015, 6, 830. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Oliver, J.D. Vibrio vulnificus: New insights into a deadly opportunistic pathogen. Environ. Microbiol. 2018, 20, 423–430. [Google Scholar] [CrossRef]
- Trinanes, J.; Martinez-Urtaza, J. Future scenarios of risk of Vibrio infections in a warming planet: A global mapping study. Lancet Planet. Health 2021, 5, e426–e435. [Google Scholar] [CrossRef]
- Ina-Salwany, M.Y.; Al-saari, N.; Mohamad, A.; Mursidi, F.A.; Mohd-Aris, A.; Amal, M.N.A.; Kasai, H.; Mino, S.; Sawabe, T.; Zamri-Saad, M. Vibriosis in fish: A review on disease development and prevention. J. Aquat. Anim. Health 2019, 31, 3–22. [Google Scholar] [CrossRef]
- Igbinosa, E.O. Detection and antimicrobial resistance of Vibrio isolates in aquaculture environments: Implications for public health. Microb. Drug Resist. 2016, 22, 238–245. [Google Scholar] [CrossRef]
- Miselli, F.; Frabboni, I.; Di Martino, M.; Zinani, I.; Buttera, M.; Insalaco, A.; Stefanelli, F.; Lugli, L.; Berardi, A. Transmission of Group B Streptococcus in late-onset neonatal disease: A narrative review of current evidence. Ther. Adv. Infect. Dis. 2022, 9, 20499361221142732. [Google Scholar] [CrossRef]
- Rao, G.G.; Khanna, P. To screen or not to screen women for Group B Streptococcus (Streptococcus agalactiae) to prevent early onset sepsis in newborns: Recent advances in the unresolved debate. Ther. Adv. Infect. Dis. 2020, 7, 2049936120942424. [Google Scholar] [CrossRef]
- George, C.R.R.; Jeffery, H.E.; Lahra, M.M. Infection of mother and baby. In Keeling’s Fetal and Neonatal Pathology; Springer: Cham, Switzerland, 2022; pp. 207–245. [Google Scholar] [CrossRef]
- Baker, C.J. Interview with Carol J. Baker, M.D. Prevention of neonatal Group B streptococcal disease. Pediatr. Infect. Dis. 1983, 2, 1–5. [Google Scholar] [CrossRef]
- Dillon, H.C., Jr.; Khare, S.; Gray, B.M. Group B streptococcal carriage and disease: A 6-year prospective study. J. Pediatr. 1987, 110, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Schindler, Y.; Rahav, G.; Nissan, I.; Madar-Shapiro, L.; Abtibol, J.; Ravid, M.; Maor, Y. Group B Streptococcus serotypes associated with different clinical syndromes: Asymptomatic carriage in pregnant women, intrauterine fetal death, and early onset disease in the newborn. PLoS ONE 2020, 15, e0244450. [Google Scholar] [CrossRef] [PubMed]
- Adu-Afari, G. Streptococcus agalactiae Infection among Parturients and Their Neonates at the Cape Coast Teaching Hospital: An Evaluation of Different Diagnostic Methods, Prevalence and Risk Factors. Ph.D. Dissertation, University of Cape Coast, Cape Coast, Ghana, 2021. [Google Scholar]
- Konuklugil, B.; Uras, I.S.; Karsli, B.; Demirbas, A. Parazoanthus axinellae extract incorporated hybrid nanostructure and its potential antimicrobial activity. Chem. Biodivers. 2023, 20, e202300744. [Google Scholar] [CrossRef] [PubMed]
Bacterial Strain | % Growth Inhibition |
---|---|
Candida albicans | 0.00 ± 0.00 |
Candida glabrata | 0.00 ± 0.00 |
Coccus sp. | 37.84 ± 2.30 |
Pseudomonas aeruginosa | 0.00 ± 0.00 |
Salmonella sp. | 0.00 ± 0.00 |
Streptococcus agalactiae | 75.00 ± 0.90 |
Vibrio alginolyticus | 73.00 ± 1.30 |
Vibrio anguillarum | 40.15 ± 1.50 |
Vibrio fischeri | 43.36 ± 5.00 |
Vibrio harveyi | 28.00 ± 4.10 |
Vibrio vulnificus | 34.32 ± 8.00 |
Source | df | MS | Pseudo-F | P(MC) | MS | Pseudo-F | P(MC) |
---|---|---|---|---|---|---|---|
Candida albicans | Candida glabrata | ||||||
Factor | 1 | 1.67 × 10−5 | 1 | ns | 1.67 × 10−5 | 1 | ns |
Residual | 4 | 1.67 × 10−5 | 1.67 × 10−5 | ||||
Total | 5 | ||||||
Coccus sp. | Pseudomonas aeruginosa | ||||||
An | 1 | 2147.80 | 271.18 | *** | 1.67 × 10−5 | 1 | ns |
Res | 4 | 7.92 | 1.67 × 10−5 | ||||
Total | 5 | ||||||
Salmonella sp. | Streptococcus agalactiae | ||||||
Factor | 1 | 1.67 × 10−5 | 1.00 | ns | 8437.50 | 6934.20 | *** |
Residual | 4 | 1.67 × 10−5 | 1.22 | ||||
Total | 5 | ||||||
Vibrio alginolyticus | Vibrio anguillarum | ||||||
Factor | 1 | 7993.50 | 3157.90 | *** | 2418 | 715.39 | *** |
Residual | 4 | 2.53 | 3.38 | ||||
Total | 5 | ||||||
Vibrio fischeri | Vibrio harveyi | ||||||
Factor | 1 | 2820.10 | 75.21 | ** | 1176.00 | 46.657 | ** |
Residual | 4 | 37.50 | 25.20 | ||||
Total | 5 | ||||||
Vibrio vulnificus | |||||||
Factor | 1 | 1766.80 | 18.39 | ** | |||
Residual | 4 | 96.05 | |||||
Total | 5 |
Source | df | MS | Pseudo-F | P(MC) | Pairwise | t | P(MC) |
---|---|---|---|---|---|---|---|
Volume | 2 | 522.12 | 195.46 | *** | V20 vs. V50 | 7.63 | *** |
Residual | 6 | 2.67 | V20 vs. V100 | 21.72 | *** | ||
Total | 8 | V50 vs. V100 | 11.10 | *** |
Source | df | MS | Pseudo-F | P(MC) | Pairwise | t | P(MC) | Pairwise | t | P(MC) |
---|---|---|---|---|---|---|---|---|---|---|
Concentration | 3 | 2980.70 | 602.58 | *** | C1 vs. C4 | 11.58 | *** | C4 vs. C6 | 17.02 | *** |
Residual | 8 | 4.95 | C1 vs. C6 | 24.25 | *** | C4 vs. C8 | 33.91 | *** | ||
Total | 11 | C1vs. C8 | 34.58 | *** | C6 vs. C8 | 27.10 | *** |
Source | df | MS | Pseudo-F | P(MC) |
---|---|---|---|---|
Temperature | 2 | 109.93 | 3.90 | ns |
Residual | 6 | 28.15 | ||
Total | 8 |
Source | df | MS | Pseudo-F | P(MC) | Pairwise | t | P(MC) |
---|---|---|---|---|---|---|---|
Incubation | 2 | 1103.50 | 100.35 | *** | I30 vs. I60 | 9.96 | *** |
Residual | 6 | 11.00 | I30 vs. I120 | 11.90 | *** | ||
Total | 8 | I60 vs. I120 | 2.29 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stabili, L.; Piraino, S.; Rizzo, L. The Mediterranean Zoanthid Parazoanthus axinellae as a Novel Source of Antimicrobial Compounds. J. Mar. Sci. Eng. 2024, 12, 354. https://doi.org/10.3390/jmse12020354
Stabili L, Piraino S, Rizzo L. The Mediterranean Zoanthid Parazoanthus axinellae as a Novel Source of Antimicrobial Compounds. Journal of Marine Science and Engineering. 2024; 12(2):354. https://doi.org/10.3390/jmse12020354
Chicago/Turabian StyleStabili, Loredana, Stefano Piraino, and Lucia Rizzo. 2024. "The Mediterranean Zoanthid Parazoanthus axinellae as a Novel Source of Antimicrobial Compounds" Journal of Marine Science and Engineering 12, no. 2: 354. https://doi.org/10.3390/jmse12020354
APA StyleStabili, L., Piraino, S., & Rizzo, L. (2024). The Mediterranean Zoanthid Parazoanthus axinellae as a Novel Source of Antimicrobial Compounds. Journal of Marine Science and Engineering, 12(2), 354. https://doi.org/10.3390/jmse12020354