Autonomous Marine Vehicle Operations
- 1. Introduction
- 2. An Overview of Published Articles
- 3. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions
- Jiang, C.; Lv, J.; Wan, L.; Wang, J.; He, B.; Wu, G. An Improved S-Plane Controller for High-Speed Multi-Purpose AUVs with Situational Static Loads. J. Mar. Sci. Eng. 2023, 11, 646. https://doi.org/10.3390/jmse11030646.
- Zhou, S.; Cai, K.; Feng, Y.; Tang, X.; Pang, H.; He, J.; Shi, X. An Accurate Detection Model of Takifugu rubripes Using an Improved YOLO-V7 Network. J. Mar. Sci. Eng. 2023, 11, 1051. https://doi.org/10.3390/jmse11051051.
- Song, Y.; Chen, Y.; Gao, J.; Wang, Y.; Pan, G. Collision Avoidance Strategy for Unmanned Surface Vessel Considering Actuator Faults Using Kinodynamic Rapidly Exploring Random Tree-Smart and Radial Basis Function Neural Network-Based Model Predictive Control. J. Mar. Sci. Eng. 2023, 11, 1107. https://doi.org/10.3390/jmse11061107.
- Yu, A.; Wang, Y.; Li, H.; Qiu, B. Automatic Alignment Method of Underwater Charging Platform Based on Monocular Vision Recognition. J. Mar. Sci. Eng. 2023, 11, 1140. https://doi.org/10.3390/jmse11061140.
- Wang, F.; Bai, Y.; Zhao, L. Physical Consistent Path Planning for Unmanned Surface Vehicles under Complex Marine Environment. J. Mar. Sci. Eng. 2023, 11, 1164. https://doi.org/10.3390/jmse11061164.
- Sun, Y.; Zheng, W.; Du, X.; Yan, Z. Underwater Small Target Detection Based on YOLOX Combined with MobileViT and Double Coordinate Attention. J. Mar. Sci. Eng. 2023, 11, 1178. https://doi.org/10.3390/jmse11061178.
- Du, X.; Liu, X.; Song, Y. Analysis of the Steady-Stream Active Flow Control for the Blended-Winged-Body Underwater Glider. J. Mar. Sci. Eng. 2023, 11, 1344. https://doi.org/10.3390/jmse11071344.
- Chen, Y.; Liu, L.; Zhang, X.; Qiao, W.; Ren, R.; Zhu, B.; Zhang, L.; Pan, G.; Yu, Y. Critical Node Identification of Multi-UUV Formation Based on Network Structure Entropy. J. Mar. Sci. Eng. 2023, 11, 1538. https://doi.org/10.3390/jmse11081538.
- Jin, Q.; Tian, Y.; Zhan, W.; Sang, Q.; Yu, J.; Wang, X. Dynamic Data-Driven Application System for Flow Field Prediction with Autonomous Marine Vehicles. J. Mar. Sci. Eng. 2023, 11, 1617. https://doi.org/10.3390/jmse11081617.
- Qu, X.; Jiang, Y.; Zhang, R.; Long, F. A Deep Reinforcement Learning-Based Path-Following Control Scheme for an Uncertain Under-Actuated Autonomous Marine Vehicle. J. Mar. Sci. Eng. 2023, 11, 1762. https://doi.org/10.3390/jmse11091762.
- Luo, W.; Ma, C.; Jiang, D.; Zhang, T.; Wu, T. The Hydrodynamic Interaction between an AUV and Submarine during the Recovery Process. J. Mar. Sci. Eng. 2023, 11, 1789. https://doi.org/10.3390/jmse11091789.
- Zhu, J.; Yang, Y.; Cheng, Y. A Millimeter-Wave Radar-Aided Vision Detection Method for Water Surface Small Object Detection. J. Mar. Sci. Eng. 2023, 11, 1794. https://doi.org/10.3390/jmse11091794.
References
- Dong, K.; Liu, T.; Zheng, Y.; Shi, Z.; Du, H.; Wang, X. Visual detection algorithm for enhanced environment perception of unmanned surface vehicles in complex marine environments. J. Intell. Robot. Syst. 2024, 110, 1. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Jiang, C.; Zhang, W. A survey of marine unmanned search system: Theory, applications and future directions. Ocean. Eng. 2023, 285, 115359. [Google Scholar] [CrossRef]
- Huy, D.; Sadjoli, N.; Azam, A.; Elhadidi, B.; Cai, Y.; Seet, G. Object perception in underwater environments: A survey on sensors and sensing methodologies. Ocean. Eng. 2023, 267, 113202. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, S.; Zhang, W. CAD-Net: A context-aware detection network for objects in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 12. [Google Scholar] [CrossRef]
- Xiao, F. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 2019, 46, 23–32. [Google Scholar] [CrossRef]
- Ntakolia, C.; Kladis, G.; Lyridis, D. A fuzzy logic approach of pareto optimality for multi-objective path planning in case of unmanned surface vehicle. J. Intell. Robot. Syst. 2023, 109, 1. [Google Scholar] [CrossRef]
- Qu, X.; Gan, W.; Song, D.; Zhou, L. Pursuit-evasion game strategy of USV based on deep reinforcement learning in complex multi-obstacle environment. Ocean. Eng. 2023, 273, 114016. [Google Scholar] [CrossRef]
- Gu, N.; Wang, D.; Peng, Z.; Wang, J.; Han, Q. Advances in line-of-sight guidance for path following of autonomous marine vehicles: An overview. IEEE Trans. Syst. Man Cybern.-Syst. 2023, 53, 1. [Google Scholar] [CrossRef]
- Wei, H.; Shi, Y. MPC-based motion planning and control enables smarter and safer autonomous marine vehicles: Perspectives and a tutorial survey. IEEE/CAA J. Autom. Sin. 2023, 10, 1. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, J.; Wang, D.; Han, Q. An overview of recent advances in coordinated control of multiple autonomous surface vehicles. IEEE Trans. Ind. Inform. 2021, 17, 2. [Google Scholar] [CrossRef]
- Abbasi, A.; MahmoudZadeh, S.; Yazdani, A. A cooperative dynamic task assignment framework for COTSBOT AUVs. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2. [Google Scholar] [CrossRef]
- Degorre, L.; Delaleau, E.; Chocron, O. A survey on model-based control and guidance principles for autonomous marine vehicles. J. Mar. Sci. Eng. 2023, 11, 430. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, X.; Zhang, G. Adaptive neural finite-time formation control for multiple underactuated vessels with actuator faults. Ocean. Eng. 2021, 222, 108556. [Google Scholar] [CrossRef]
- Gao, Z.; Guo, G. Fixed-time sliding mode formation control of AUVs based on a disturbance observer. IEEE/CAA J. Autom. Sin. 2020, 7, 2. [Google Scholar] [CrossRef]
- Wang, N.; Su, S. Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles. IEEE Trans. Control Syst. Technol. 2021, 29, 2. [Google Scholar] [CrossRef]
- Qu, X.; Liang, X.; Hou, Y.; Li, Y.; Zhang, R. Finite-time sideslip observer-based synchronized path-following control of multiple unmanned underwater vehicles. Ocean. Eng. 2020, 217, 107941. [Google Scholar] [CrossRef]
- Qu, X.; Liang, X.; Hou, Y. Fuzzy State Observer Based Cooperative Path-Following Control of Autonomous Underwater Vehicles with Unknown Dynamics and Ocean Disturbances. Int. J. Fuzzy Syst. 2021, 23, 6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Zhang, R.; Qu, X. Autonomous Marine Vehicle Operations. J. Mar. Sci. Eng. 2024, 12, 355. https://doi.org/10.3390/jmse12020355
Liang X, Zhang R, Qu X. Autonomous Marine Vehicle Operations. Journal of Marine Science and Engineering. 2024; 12(2):355. https://doi.org/10.3390/jmse12020355
Chicago/Turabian StyleLiang, Xiao, Rubo Zhang, and Xingru Qu. 2024. "Autonomous Marine Vehicle Operations" Journal of Marine Science and Engineering 12, no. 2: 355. https://doi.org/10.3390/jmse12020355
APA StyleLiang, X., Zhang, R., & Qu, X. (2024). Autonomous Marine Vehicle Operations. Journal of Marine Science and Engineering, 12(2), 355. https://doi.org/10.3390/jmse12020355