Centrifuge Modelling of Composite Bucket Foundation Breakwater in Clay under Monotonic and Cyclic Loads
Abstract
:1. Introduction
2. Laboratory Investigations
2.1. Geotechnical Centrifuge Test Setup
2.2. Modeling of Composite Bucket Foundation Breakwater
2.3. Preparation of Test Soil
2.4. Simulation of Storm Wave Load on Composite Bucket Foundation
2.5. Test Program
3. Results
3.1. Behavior Breakwater under Monotonic Load
3.1.1. Displacement Properties of Breakwater
3.1.2. Excess Pore Pressure in the Foundation under Monotonic Load
3.2. Behavior of Breakwater under Cyclic Load
3.2.1. Cyclic Displacement of Breakwater
3.2.2. Excess Pore Pressure under Cyclic Load
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andersen, K.H.; Dyvik, R.; Schrøder, K.; Hansteen, O.E.; Bysveen, S. Field tests of anchors in clay II: Predictions and interpretation. J. Geotech. Eng. 1993, 119, 1532–1549. [Google Scholar] [CrossRef]
- Kim, S.-R.; Hung, L.C.; Oh, M. Group effect on bearing capacities of tripod bucket foundations in undrained clay. Ocean Eng. 2014, 79, 1–9. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Zhang, H.; Guo, X. Susceptibility of typical marine geological disasters: An overview. Geoenvironmental Disasters 2023, 10, 10. [Google Scholar] [CrossRef]
- Liu, X.-L.; Jia, Y.-G.; Zheng, J.-W.; Hou, W.; Zhang, L.; Zhang, L.-P.; Shan, H.-X. Experimental evidence of wave-induced inhomogeneity in the strength of silty seabed sediments: Yellow River Delta, China. Ocean Eng. 2013, 59, 120–128. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Yan, Z.; Wang, Y.C. Numerical analyses of caisson breakwaters on soft foundations under wave cyclic loading. China Ocean. Eng. 2016, 30, 1–18. [Google Scholar] [CrossRef]
- Xiao, Z.; Tian, Y.; Gourvenec, S. A practical method to evaluate failure envelopes of shallow foundations considering soil strain softening and rate effects. Appl. Ocean Res. 2016, 59, 395–407. [Google Scholar] [CrossRef]
- Zhang, X.; Leung, C.; Lee, F. Centrifuge modelling of caisson breakwater subject to wave-breaking impacts. Ocean Eng. 2009, 36, 914–929. [Google Scholar] [CrossRef]
- Zhang, X.; Lee, F.; Leung, C. Response of caisson breakwater subjected to repeated impulsive loading. Géotechnique 2009, 59, 3–16. [Google Scholar] [CrossRef]
- Pan, Z.; Guan, Y.; Han, X. Reliability analysis of bucket foundation breakwater considering water-level variations under complex natural conditions. Eng. Fail. Anal. 2023, 149, 107250. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Xiao, Z.; Chi, L.H.; Xie, S.W.; Li, Y.Y. A simplified calculation method for stability of bucket foundation breakwater. Rock Soil Mech. 2009, 30, 1367–1372. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, Y.Z.; Ji, C.N. Stability analysis of bucket foundation breakwaters based on limit equilibrium method. Chin. J. Geotech. Eng. 2013, 35, 828–833. [Google Scholar]
- Zhu, X.; Chen, Z.; Guan, Y.-F.; Ni, P.; Fan, K.-F.; Jing, Y.-X.; Yang, C.-J. Field test on the mechanism of composite bucket foundation penetrating sandy silt overlying clay. Ocean Eng. 2023, 288, 116102. [Google Scholar] [CrossRef]
- Guo, X.; Fan, N.; Zheng, D.; Fu, C.; Wu, H.; Zhang, Y.; Song, X.; Nian, T. Predicting impact forces on pipelines from deep-sea fluidized slides: A comprehensive review of key factors. Int. J. Min. Sci. Technol. 2024, 34, 187–201. [Google Scholar] [CrossRef]
- Guo, X.; Liu, X.; Li, M.; Lu, Y. Lateral force on buried pipelines caused by seabed slides using a CFD method with a shear interface weakening model. Ocean Eng. 2023, 280, 114663. [Google Scholar] [CrossRef]
- Guo, X.; Fan, N.; Liu, Y.; Liu, X.; Wang, Z.; Xie, X.; Jia, Y. Deep seabed mining: Frontiers in engineering geology and environment. Int. J. Coal Sci. Technol. 2023, 10, 23. [Google Scholar] [CrossRef]
- Bransby, M.F.; Yun, G.-J. The undrained capacity of skirted strip foundations under combined loading. Géotechnique 2009, 59, 115–125. [Google Scholar] [CrossRef]
- Achmus, M.; Akdag, C.; Thieken, K. Load-bearing behavior of suction bucket foundations in sand. Appl. Ocean Res. 2013, 43, 157–165. [Google Scholar] [CrossRef]
- Thieken, K.; Achmus, M.; Schröder, C. On the behavior of suction buckets in sand under tensile loads. Comput. Geotech. 2014, 60, 88–100. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, X.Y.; Wang, L.Z.; Wang, L.L.; He, B. A bounding-surface based cyclic ‘p-y+M-θ’ model for unified description of laterally loaded piles with different failure modes in clay. Can. Geotech. J. 2024. [Google Scholar] [CrossRef]
- Hong, Y.; Yao, M.H.; Wang, L.Z. A multi-axial bounding surface p-y model with application in analyzing pile responses under multi-directional lateral cycling. Comput. Geotech. 2023, 157, 105301. [Google Scholar] [CrossRef]
- Park, J.-S.; Park, D.; Yoo, J.-K. Vertical bearing capacity of bucket foundations in sand. Ocean Eng. 2016, 121, 453–461. [Google Scholar] [CrossRef]
- Park, J.-S.; Park, D. Vertical bearing capacity of bucket foundation in sand overlying clay. Ocean Eng. 2017, 134, 62–76. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.; Zeng, X. Centrifuge modeling of lateral bearing behavior of offshore wind turbine with suction bucket foundation in sand. Ocean Eng. 2017, 139, 140–151. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.; Zeng, X. Lateral response of improved suction bucket foundation for offshore wind turbine in centrifuge modelling. Ocean Eng. 2017, 141, 295–307. [Google Scholar] [CrossRef]
- Choo, Y.W.; Kim, D.-J.; Youn, J.-U.; Hossain, M.S.; Seo, J.; Kim, J.-H. Behavior of a Monopod Bucket Foundation Subjected to Combined Moment and Horizontal Loads in Silty Sand. J. Geotech. Geoenvironmental Eng. 2021, 147, 107250. [Google Scholar] [CrossRef]
- Tasiopoulou, P.; Chaloulos, Y.; Gerolymos, N.; Giannakou, A.; Chacko, J. Cyclic lateral response of OWT bucket foundations in sand: 3D coupled effective stress analysis with Ta-Ger model. Soils Found. 2021, 61, 371–385. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Lu, X. Centrifuge modeling of suction bucket foundations for platforms under ice-sheet-induced cyclic lateral loadings. Ocean Eng. 2007, 34, 1069–1079. [Google Scholar] [CrossRef]
- Barari, A.; Ibsen, L. Undrained response of bucket foundations to moment loading. Appl. Ocean Res. 2012, 36, 12–21. [Google Scholar] [CrossRef]
- Liu, M.; Yang, M.; Wang, H. Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand. Ocean Eng. 2014, 82, 169–179. [Google Scholar] [CrossRef]
- Byrne, B.W.; Houlsby, G.T. Experimental investigations of the response of suction caissons to transient combined loading. J. Geotech. Geoenvironmental Eng. 2004, 130, 240–253. [Google Scholar] [CrossRef]
- Cox, J.A.; O’Loughlin, C.D.; Cassidy, M.; Bhattacharya, S.; Gaudin, C.; Bienen, B. Centrifuge study on the cyclic performance of caissons in sand. Int. J. Phys. Model. Geotech. 2014, 14, 99–115. [Google Scholar] [CrossRef]
- Zhu, B.; Byrne, B.W.; Houlsby, G.T. Long-term lateral cyclic response of suction caisson foundations in sand. J. Geotech. Geoenvironmental Eng. 2013, 139, 73–83. [Google Scholar] [CrossRef]
- Zhu, B.; Kong, D.-Q.; Chen, R.-P.; Kong, L.-G.; Chen, Y.-M. Installation and lateral loading tests of suction caissons in silt. Can. Geotech. J. 2011, 48, 1070–1084. [Google Scholar] [CrossRef]
- Grecu, S.; Ibsen, L.B.; Barari, A. Winkler springs for axial response of suction bucket foundations in cohesionless soil. Soils Found. 2021, 61, 64–79. [Google Scholar] [CrossRef]
- Ding, H.; Liu, Y.; Zhang, P.; Le, C. Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay. Ocean Eng. 2015, 103, 114–122. [Google Scholar] [CrossRef]
- Kim, D.-J.; Choo, Y.W.; Kim, J.-H.; Kim, S. Investigation of monotonic and cyclic behavior of tripod suction bucket foundations for offshore wind towers using centrifuge modeling. J. Geotech. Geoenvironmental Eng. 2014, 140, 04014008. [Google Scholar] [CrossRef]
- Kim, S.-W.; Suh, K.-D. Determining the stability of vertical breakwaters against sliding based on individual sliding distances during a storm. Coast. Eng. 2014, 94, 90–101. [Google Scholar] [CrossRef]
- DNV-OS-J101; Design of Offshore Wind Turbine Structures. Det Norske Veritas (DNV): Oslo, Norway, 2007.
- Wang, Y.Z.; Xiao, Z.; Li, Y.Y.; Xie, S.W. Finite element analysis for earth pressure on bucket foundation of breakwater. Chin. J. Geotech. Eng. 2009, 31, 622–627. [Google Scholar]
- Xiao, Z.; Wang, Y.Z.; Ji, C.N.; Li, Y.Y.; Xie, S.W. Finite element analysis of the stability of bucket foundation breakwater. China Civ. Eng. J. 2009, 42, 119–125. [Google Scholar]
- Cai, Y.; Hao, B.; Gu, C.; Wang, J.; Pan, L. Effect of anisotropic consolidation stress paths on the undrained shear behavior of reconstituted Wenzhou clay. Eng. Geol. 2018, 242, 23–33. [Google Scholar] [CrossRef]
- Ha, J.G.; Lee, S.-H.; Kim, D.-S.; Choo, Y.W. Simulation of soil–foundation–structure interaction of Hualien large-scale seismic test using dynamic centrifuge test. Soil Dyn. Earthq. Eng. 2014, 61–62, 176–187. [Google Scholar] [CrossRef]
- Loh, C.K.; Tan, T.S.; Lee, F.H. Three-dimensional excavation test. Centrifuge 1998, 98, 85–90. [Google Scholar]
- Garnier, J.; Gaudin, C.; Springman, S.M.; Culligan, P.J.; Goodings, D.; Konig, D.; Kutter, B.; Phillips, R.; Randolph, M.R.; Thorel, L. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int. J. Phys. Model. Geotech. 2007, 8, 1–23. [Google Scholar] [CrossRef]
- Kutter, B.L. Recent Advances in Centrifuge Modeling of Seismic Shaking. In Proceedings of the 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, MO, USA, 5 April 1995; Volume 2, pp. 927–942. [Google Scholar]
- Ling, H.I.; Cheng, A.H.-D.; Mohri, Y.; Kawabata, T. Permanent displacement of composite breakwaters subject to wave impact. J. Waterw. Port Coast. Ocean Eng. 1999, 125, 1–8. [Google Scholar] [CrossRef]
- Mustapa, M.; Yaakob, O.; Ahmed, Y.M.; Rheem, C.-K.; Koh, K.; Adnan, F.A. Wave energy device and breakwater integration: A review. Renew. Sustain. Energy Rev. 2017, 77, 43–58. [Google Scholar] [CrossRef]
- Leblanc, C.; Houlsby, G.T.; Byrne, B.W. Response of stiff piles in sand to long-term cyclic lateral loading. Géotechnique 2010, 60, 79–90. [Google Scholar] [CrossRef]
- Xiao, Z.; Ge, B.; Wang, Y. Capacities and failure modes of suction bucket foundation with internal bulkheads. J. Ocean Univ. China 2017, 16, 627–634. [Google Scholar] [CrossRef]
- Hung, L.C.; Kim, S.-R. Evaluation of undrained bearing capacities of bucket foundations under combined loads. Mar. Georesources Geotechnol. 2014, 32, 76–92. [Google Scholar] [CrossRef]
- Villalobos, F.A.; Byrne, B.W.; Houlsby, G.T. An experimental study of the drained capacity of suction caisson foundations under monotonic loading for offshore applications. Soils Found. 2009, 49, 477–488. [Google Scholar] [CrossRef]
- Tanaka, H.; Tsutsumi, A.; Ohashi, T. Unloading behavior of clays measured by CRS test. Soils Found. 2014, 54, 81–93. [Google Scholar] [CrossRef]
Parameters | Scaling Law (Model/Prototype) |
---|---|
Length | 1/N |
Density | 1 |
Force | 1/N2 |
Bending moment | 1/N3 |
Undrained shear strength | 1 |
Moment of inertia | 1/N4 |
Flexural stiffness | 1/N4 |
Frequency | N |
Time (consolidation) | 1/N2 |
Time (dynamic) | 1/N |
Acceleration | N |
The Specific Gravity of Soil Gs | Density ρ | Water Content w | Liquid Limit wL | Plastic Limit wP | Plasticity Index Ip |
---|---|---|---|---|---|
/g·cm−3 | /% | /% | /% | ||
2.75 | 1.65 | 61.5 | 42 | 23.5 | 18.5 |
Test No. | Loading Eccentricity e (m) | Soil Undrained Shear Strength Su (kPa) | ζb | ζc | Cycle Number N |
---|---|---|---|---|---|
S1 | 4.5 | 23.9 | - | - | - |
S2 | 10.5 | 22.9 | - | - | - |
S3 | 10.5 | 37.4 | - | - | - |
S4 | 10.5 | 44.5 | - | - | - |
C1 | 4.5 | 22.5 | 1 | −1 | 46,800 |
C2 | 4.5 | 22.3 | 1 | −0.4 | 46,800 |
Test No. | Hu | θf (rad) | uf (mm) | vf (mm) |
---|---|---|---|---|
S1 | 2.69 Hd | 0.035 | 2 | 207 |
S2 | 1.31 Hd | 0.028 | 110 | 162 |
S3 | 3.05 Hd | 0.044 | 189 | 144 |
S4 | 4.29 Hd | 0.049 | 153 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Lu, Z.; Cai, Z.; Xu, G. Centrifuge Modelling of Composite Bucket Foundation Breakwater in Clay under Monotonic and Cyclic Loads. J. Mar. Sci. Eng. 2024, 12, 469. https://doi.org/10.3390/jmse12030469
Jiang M, Lu Z, Cai Z, Xu G. Centrifuge Modelling of Composite Bucket Foundation Breakwater in Clay under Monotonic and Cyclic Loads. Journal of Marine Science and Engineering. 2024; 12(3):469. https://doi.org/10.3390/jmse12030469
Chicago/Turabian StyleJiang, Minmin, Zhao Lu, Zhengyin Cai, and Guangming Xu. 2024. "Centrifuge Modelling of Composite Bucket Foundation Breakwater in Clay under Monotonic and Cyclic Loads" Journal of Marine Science and Engineering 12, no. 3: 469. https://doi.org/10.3390/jmse12030469
APA StyleJiang, M., Lu, Z., Cai, Z., & Xu, G. (2024). Centrifuge Modelling of Composite Bucket Foundation Breakwater in Clay under Monotonic and Cyclic Loads. Journal of Marine Science and Engineering, 12(3), 469. https://doi.org/10.3390/jmse12030469