A Machine Learning Technique for Deriving the Optimal Mesh Size of a Gizzard Shad (Konosirus punctatus) Gillnet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Gear Design and Fabrication
2.2. Test Fishing Operation and Survey
2.3. Mesh Selectivity Curve Estimation
2.4. Statistical and Machine Learning Analysis
3. Results
3.1. Bycatch Rate
3.2. Body Length Distribution of the Gizzard Shad
3.3. Mesh Selectivity Curve Estimation
3.4. Statistics and Decision Tree Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gulland, J.A. Fish Stock Assessment: A Manual of Basic Methods; John Wiley and Sons N.Y.: Hoboken, NJ, USA, 1983. [Google Scholar]
- Wileman, D.A.; Ferro, R.S.T.; Fonteyne, R.; Millar, R.B. Manual of Methods of Measuring the Selectivity of Towed Fshing Gears; ICES Cooperative Research Reports: Copenhagen, Denmark, 1996; Volume 215, pp. 1–126. [Google Scholar]
- Millar, R.B.; Holst, R. Estimation of gillnet and hook selectivity using log-linear models. ICES J. Mar. Sci. 1997, 54, 471–477. [Google Scholar] [CrossRef]
- Yokota, K.; Fujimori, Y.; Shiode, D.; Tokai, T. Effect of thin twine on gill net size-selectivity analyzed with the direct estimation method. Fish. Sci. 2001, 67, 851–856. [Google Scholar] [CrossRef]
- Park, C.D.; Jeong, E.C.; Shin, J.K.; An, H.C.; Fujimori, Y. Mesh selectivity of encircling gill net for gizzard shad Konosirus punctatus in the coastal sea of Korea. Fish. Sci. 2004, 70, 553–560. [Google Scholar] [CrossRef]
- Park, C.D.; An, H.C.; Cho, S.K.; Bae, B.S.; Park, H.H.; Bae, J.H.; Kim, H.Y. Size selectivity of gill net for female snow crab, Chionoecetes opilio. J. Korean Soc. Fish. Ocean Technol. 2009, 45, 122–127. [Google Scholar] [CrossRef]
- Kim, I.O.; Lee, G.H.; Shon, B.K. Mesh selectivity of multifilament nylon gillnet for ocellate spot skate (Okamejei kenojei) in the western sea of Korea. J. Korean Soc. Fish. Ocean Technol. 2013, 49, 352–359. [Google Scholar] [CrossRef]
- An, H.C.; Bae, J.H.; Kim, S.H. Study on the size selectivity of a gillnet for Pacific herring (Clupea pallasii) in the eastern sea of Korea. J. Korean Soc. Fish. Ocean Technol. 2013, 49, 360–367. [Google Scholar] [CrossRef]
- Kim, I.O.; Park, C.D.; Cho, S.K.; Kim, H.Y.; Cha, B.J.; Lee, G.H. Mesh selectivity of monofilament and multifilament nylon trammel net for marbled sole (Pleuronectes yokohamae) in the western sea of Korea. J. Korean Soc. Fish. Ocean Technol. 2015, 51, 302–311. [Google Scholar] [CrossRef]
- Ramírez-Amaro, S.; Galván-Magaña, F. Effect of gillnet selectivity on elasmobranchs off the northwestern coast of Mexico. Ocean Coast. Manag. 2019, 172, 105–116. [Google Scholar] [CrossRef]
- Kim, P.K.; Kim, H.S.; Kim, S.H. Mesh Size Selectivity of Tie-Down Gillnets for the Blackfin Flounder (Glyptocephalus stelleri) in Korea. Appl. Sci. 2021, 11, 9810. [Google Scholar] [CrossRef]
- Holst, R.; Wileman, D.; Madsen, N. The effect of twine thickness on the size selectivity and fishing power of Baltic cod gill nets. Fish. Res. 2002, 56, 303–312. [Google Scholar] [CrossRef]
- Fonseca, P.; Martins, R.; Campos, A.; Sobral, P. Gill-net selectivity off the Portuguese western coast. Fish. Res. 2005, 73, 323–339. [Google Scholar] [CrossRef]
- KOSIS. Korean Statistical Information Service Fishery Production Survey. 2022. Available online: https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01 (accessed on 7 June 2023).
- Carol, J.; García-Berthou, E. Gillnet selectivity and its relationship with body shape for eight freshwater fish species. J. Appl. Ichthyol. 2007, 23, 654–660. [Google Scholar] [CrossRef]
- Akongyuure, D.N.; Amisah, S.; Agyemang, T.K. Gillnet selectivity estimates for five commercially important fish species in Tono Reservoir, Northern Ghana. Lakes Reserv. Res. Manag. 2017, 22, 278–289. [Google Scholar] [CrossRef]
- Lemke, L.R.; Simpfendorfer, C.A. Gillnet size selectivity of shark and ray species from Queensland, Australia. Fish. Manag. Ecol. 2023, 30, 300–309. [Google Scholar] [CrossRef]
- Park, C.D.; Bae, J.H.; Cho, S.K.; An, H.C.; Kim, I.O. Size selectivity of gill net for spinyhead sculpin, Dasycottus setiger in the eastern coastal waters of Korea. J. Korean Soc. Fish. Ocean Technol. 2016, 52, 281–289. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.H.; Park, J.Y. Marine Fishes of Korea; Kyo-Hak: Seoul, Republic of Korea, 2002; p. 646. [Google Scholar]
- Koo, M.S.; Lee, G.H.; Cha, B.J. A study on the Sinking Performance Characteristics of Various Nets Used in Purse Seine Gear. J. Kor. Soc. Fish. Mar. Edu. 2018, 30, 1714–1724. [Google Scholar] [CrossRef]
- Kim, H.B.; Lee, T.Y. Reproductive biology of a shad, Konosirus punctatus (Temminck et Schlegel). Korean J. Fish. Aquat. Sci. 1984, 17, 206–218. [Google Scholar]
- Lee, T.W. Age composition and reproductive period of the shad, Konosirus punctatus, in Cheonsu Bay. Korean J. Fish. Aquat. Sci. 1983, 18, 161–168. [Google Scholar]
- Myoung, S.H.; Kim, J.K. Genetic diversity and population structure of the gizzard shad, Konosirus punctatus (Clupeidae, Pisces), in Korean waters based on mitochondrial DNA control region sequences. Genes Genom. 2014, 36, 591–598. [Google Scholar] [CrossRef]
- Polet, H.; Depestele, J. Impact Assessment of the Effects of a Selected Range of Fishing Gears in the North Sea; ILVO: Merelbeke, Belgium, 2010; p. 120. [Google Scholar]
- Bastardie, F.; Nielsen, J.R.; Andersen, B.S.; Eigaard, O.R. Integrating individual trip planning in energy efficiency–Building decision tree models for Danish fisheries. Fish Res. 2013, 143, 119–130. [Google Scholar] [CrossRef]
- Jeong, E.C.; Park, C.D.; Park, S.W.; Lee, J.H.; Tokai, T. Size selectivity of trap for male red queen crab Chionoecetes japonicus with the extended SELECT model. Fish. Sci. 2000, 66, 494–501. [Google Scholar] [CrossRef]
- Ishida, T. On the gill net mesh selectivity. Bull. Hokkaido Reg. Fish. Res. Lab. 1962, 25, 20–25. [Google Scholar]
- Holt, S.J. A method of determining gear selectivity and its application. ICNAF Spec. Publ. 1963, 5, 106–115. [Google Scholar]
- Sparre, P.; Venema, S.C. Introduction to tropical fish stock assessment. FAO Fish. 1992, 306, 172–199. [Google Scholar]
- Millar, R.B.; Fryer, R.J. Estimating the size-selection curves of towed gears, traps, nets and hooks. Rev. Fish Biol. Fish. 1999, 9, 89–116. [Google Scholar] [CrossRef]
- Millar, R.B.; Walsh, D.J. Analysis of trawl selectivity studies with an application to trouser trawls. Fish. Res. 1992, 13, 205–220. [Google Scholar] [CrossRef]
- Yamashita, H.; Shiode, D.; Tokai, T. Longline hook selectivity for red tilefish Branchiostegus japonicus in the East China Sea. Fish. Sci. 2009, 75, 853–874. [Google Scholar] [CrossRef]
- Fujimori, T.; Tokai, T. Estimation of gillnet selectivity curve by maximum likehood method. Fish. Sci. 2001, 67, 644–654. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, J.H. Mesh selectivity in Trammel net for flat fish. J. Korean Soc. Fish. Technol. 2002, 38, 91–100. [Google Scholar] [CrossRef]
- Park, C.D.; An, H.C.; Cho, S.K.; Baik, C.I. Size selectivity of gill net for male snow crab, Chionoecetes opilio. J. Korean Soc. Fish. Technol. 2003, 39, 143–151. [Google Scholar] [CrossRef]
- Janikow, C.Z. Fuzzy decision trees: Issues and methods. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1998, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- NFRDI. Monitoring for Fisheries Regulation on Fishery Resources; National Fisheries Research and Development Institute: Busan, Republic of Korea, 2015; p. 51. [Google Scholar]
- Kim, S.H.; Park, S.W.; Lee, K.H.; Yang, Y.S. The estimation of the optimum mesh size selectivity of a drift net for yellow croaker (Larimichthys polyactis) using by the SELECT model. J. Korean Soc. Fish. Technol. 2012, 48, 10–19. [Google Scholar] [CrossRef]
Mesh Size (mm) | Height (Mesh Number) | Length (Mesh Number) | Number of Floats | Length between Floats (cm) | Number of Sinkers | Length between Sinkers (cm) | Mesh Number between Floats | Mesh Number between Sinkers | Float Line Length (m) | Sinker Line Length (m) |
---|---|---|---|---|---|---|---|---|---|---|
50.5 | 100 | 1182 | 35 | 87 | 101 | 30 | 35 | 12 | 29.6 | 30 |
55.1 | 92 | 1083 | 35 | 87 | 101 | 30 | 32 | 11 | 29.6 | 30 |
60.6 | 83 | 985 | 35 | 87 | 101 | 30 | 29 | 10 | 29.6 | 30 |
67.3 | 75 | 887 | 35 | 87 | 101 | 30 | 26 | 9 | 29.6 | 30 |
Year | Test Rounds | Fishing Operation Period | Shooting/Hauling Events | Test Gear Panels | Panels per Test Gear | Water Depth (m) | Water Temperature (°C) |
---|---|---|---|---|---|---|---|
2016 | 1 | 9.7–9.9 | 3 | 72 | 18 | 4.3–7.5 | 25.0–26.5 |
2 | 9.22–9.24 | 3 | 96 | 24 | 5.2–8.4 | 23.4–23.9 | |
3 | 10.12–10.14 | 3 | 96 | 24 | 3.5–9.5 | 21.2–22.0 | |
4 | 10.26–10.28 | 3 | 96 | 24 | 3.5–11.0 | 18.3–21.3 | |
Subtotal | 12 days | 12 | 360 | 90 | 3.5–11.0 | 18.3–26.5 | |
2017 | 1 | 8.9–8.11 | 3 | 96 | 24 | 5.0–10.0 | 29.0–29.5 |
2 | 8.23–8.25 | 3 | 96 | 24 | 8.0–14.0 | 28.5–29.4 | |
3 | 9.6–9.8 | 3 | 96 | 24 | 4.5–11.0 | 24.4–24.8 | |
4 | 9.19–9.21 | 3 | 96 | 24 | 5.0–6.5 | 23.7–24.5 | |
5 | 10.11–10.13 | 3 | 96 | 24 | 7.0–12.0 | 22.0–26.0 | |
6 | 10.25–10.27 | 3 | 96 | 24 | 5.0–7.0 | 18.0–18.6 | |
7 | 11.14–11.15 | 2 | 64 | 16 | 5.5–10.5 | 15.3–15.7 | |
Subtotal | 20 days | 20 | 640 | 160 | 4.5–14.0 | 15.3–29.5 | |
Total | 32 days | 32 | 1000 | 250 | 3.5–14.0 | 15.3–29.5 |
Variable | Description |
---|---|
Month | Test operation month |
Mesh | Mesh size |
Mature | Maturity was judged based on the gizzard shad’s total and crotch lengths. The minimum mature length was 15.8 cm, set to 1 if it was less than the mature length and 0 if it was longer than the mature length. |
Bycatch | The bycatch rate of fish from each net was calculated (other catches excluding shad/total catch × 100). |
CPUE (catch per unit effort) | The standard was set as the number of fish per tested fishing gear, and the catch per unit effort in each test fishing operation was calculated (total catch in one fishing operation/number of fishing gear per fishing gear). |
Score | A score was made using gizzard maturity, bycatch rate, and CPUE data to determine the optimal net for gizzard shad fishing. Excluding mature, bycatch and CPUE were recorded to 0 and 1 based on the scoring average. However, there is no standard value for bycatch rate or CPUE for optimal fishing with shad gillnets, so the average was derived from the 2016–2017 fishing season as the standard. Thus, the maturity of gizzard shads was based on mature data. Bycatch calculated the average (22.29%) of the bycatch rate in all test operations and scored it as 0 if it was below the average and 1 if it exceeded the average. CPUE is calculated as the CPUE average (8.27) in all test operations and is scored as 0 if it is above the average and 1 if it is below average. The score ranged from 0 to 3, with the standards set as 0 = very good, 1 = good, 2 = bad, and 3 = very bad. |
Mesh Size Species | 50.5 mm | 55.1 mm | 60.6 mm | 67.3 mm | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
No. of Species | Weight (g) | No. of Species | Weight (g) | No. of Species | Weight (g) | No. of Species | Weight (g) | No. of Species | Weight (g) | |
Trichiurus lepturus | 1 | 95 | 1 | 77 | 1 | 142 | 3 | 314 | ||
Acanthopagrus schlegeli | 3 | 175 | 1 | 73 | 4 | 248 | ||||
Muraenesox cinereus | 2 | 754 | 2 | 455 | 2 | 998 | 6 | 2207 | ||
Paralichthys olivaceus | 3 | 122 | 1 | 68 | 1 | 63 | 5 | 253 | ||
Agrammus agrammus | 1 | 176 | 1 | 176 | ||||||
Lateolabrax japonicus | 74 | 6416 | 61 | 6846 | 23 | 2741 | 16 | 1030 | 174 | 17,033 |
Amblychaeturi-chthys hexanema | 2 | 61 | 2 | 296 | 1 | 5 | 5 | 362 | ||
Oplegnathus fasciatus | 1 | 110 | 1 | 220 | 2 | 330 | ||||
Ditrema temminckii | 7 | 257 | 4 | 174 | 1 | 88 | 8 | 616 | 20 | 1135 |
Saurida undosquamis | 1 | 202 | 2 | 828 | 3 | 1010 | 6 | 2040 | ||
Engraulis japonicus | 2 | 11 | 2 | 10 | 2 | 17 | 6 | 38 | ||
Pseudopleuron-ectes yokohamae | 1 | 37 | 1 | 37 | ||||||
Sardinella zunasi | 30 | 555 | 16 | 402 | 8 | 175 | 6 | 107 | 60 | 1239 |
Argyrosomus argentatus | 16 | 2324 | 10 | 1695 | 9 | 1083 | 9 | 1569 | 44 | 6671 |
Sebastes schlegeli | 1 | 38 | 1 | 38 | ||||||
Conger myriaster | 1 | 55 | 1 | 55 | ||||||
Scomberomorus niphonius | 43 | 9190 | 22 | 5558 | 19 | 5872 | 11 | 4093 | 95 | 24,713 |
Parapercis sexfasciata | 1 | 54 | 1 | 54 | ||||||
Glossanodon semifasciatus | 1 | 54 | 1 | 47 | 2 | 101 | ||||
Chelidonichthys spinosus | 22 | 1169 | 22 | 1777 | 7 | 623 | 10 | 655 | 61 | 4224 |
Inimicus japonicus | 1 | 158 | 1 | 158 | ||||||
Sphyraena japonica | 1 | 18 | 1 | 18 | ||||||
Platycephalus indicus | 20 | 2884 | 20 | 2911 | 10 | 2695 | 8 | 1841 | 58 | 10,331 |
Konosirus puntatus | 1650 | 123,786 | 881 | 77,107 | 243 | 27,710 | 40 | 5651 | 2814 | 234,254 |
Leiognathus nuchalis | 424 | 8729 | 182 | 4041 | 41 | 852 | 35 | 612 | 682 | 14,234 |
Hexagrammos otakii | 2 | 269 | 2 | 269 | ||||||
Pagrus major | 2 | 135 | 2 | 135 | ||||||
Larimichthys crocea | 1 | 22 | 1 | 22 | ||||||
Thryssa kammalensis | 74 | 1006 | 36 | 491 | 22 | 361 | 11 | 144 | 143 | 2002 |
Aplysia kurodai | 1 | 266 | 1 | 266 | ||||||
Sepiida | 1 | 76 | 1 | 76 | ||||||
Octopus minor | 1 | 210 | 1 | 210 | ||||||
Loligo japonica | 1 | 61 | 1 | 61 | ||||||
Amphioctopus fangsiao | 5 | 203 | 1 | 40 | 1 | 18 | 7 | 261 | ||
Oratosquilla oratoria | 29 | 694 | 12 | 297 | 9 | 186 | 17 | 624 | 67 | 1801 |
Portunus trituberculatus | 5 | 1050 | 3 | 276 | 4 | 596 | 5 | 1099 | 17 | 3021 |
Portunus trituberculatus | 7 | 350 | 14 | 771 | 8 | 395 | 12 | 700 | 41 | 2216 |
Portunus sanguinolentus | 5 | 474 | 1 | 123 | 5 | 481 | 11 | 1078 | ||
Marsupenaeus japonicus | 4 | 123 | 3 | 73 | 6 | 199 | 4 | 115 | 17 | 510 |
Metapenaeus joyneri | 1 | 8 | 1 | 9 | 2 | 17 | ||||
Fenneropenaeus chinensis | 1 | 38 | 1 | 38 | ||||||
Tonna luteostoma | 1 | 197 | 1 | 197 | ||||||
Batillus cornutus | 1 | 95 | 1 | 95 | ||||||
Total | 591 | 47,768 | 445 | 43,172 | 272 | 33,251 | 96 | 10,340 | 1404 | 134,531 |
Mesh Size (mm) | Number of Sampled Species | Weight (g) | Total Length (cm) | Fork Length (cm) | Bycatch Ratio (%) |
---|---|---|---|---|---|
50.5 | 30 | 75.0 | 19.7 | 17.1 | 23.2 |
55.1 | 27 | 87.5 | 20.5 | 17.9 | 26.4 |
60.6 | 26 | 114.0 | 22.0 | 19.4 | 40.6 |
67.3 | 22 | 142.3 | 23.5 | 20.7 | 71.6 |
Average | 83.2 | 20.2 | 17.6 | 40.5 |
Mesh (mm) | Mature | Score | CPUE | Bycatch (%) |
---|---|---|---|---|
50.5 | 0.04 | 0.74 | 11.46 | 20.31 |
55.1 | 0.00 | 0.75 | 5.45 | 21.61 |
60.6 | 0.00 | 1.50 | 2.38 | 27.24 |
67.3 | 0.26 | 1.58 | 0.44 | 39.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, M.; Kwon, I. A Machine Learning Technique for Deriving the Optimal Mesh Size of a Gizzard Shad (Konosirus punctatus) Gillnet. J. Mar. Sci. Eng. 2024, 12, 592. https://doi.org/10.3390/jmse12040592
Koo M, Kwon I. A Machine Learning Technique for Deriving the Optimal Mesh Size of a Gizzard Shad (Konosirus punctatus) Gillnet. Journal of Marine Science and Engineering. 2024; 12(4):592. https://doi.org/10.3390/jmse12040592
Chicago/Turabian StyleKoo, Myungsung, and Inyeong Kwon. 2024. "A Machine Learning Technique for Deriving the Optimal Mesh Size of a Gizzard Shad (Konosirus punctatus) Gillnet" Journal of Marine Science and Engineering 12, no. 4: 592. https://doi.org/10.3390/jmse12040592