Analyzing the Mediterranean Sea’s Dynamic Current System and Modeling of Renewable Current Energy Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote-Sensed Data
2.3. Bathymetry Data
2.4. Calculating Potential Energy with Underwater Turbine System
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MS | Mediterranean Sea |
WMS | West Mediterranean Sea |
EMS | East Mediterranean Sea |
DJF | December, January, February |
MAM | March, April, May |
JJA | June, July, August |
SON | September, October, November |
E | available current velocity power per unit area of flow (watt) |
Ep | energy potential gigawatt |
p | water density (1025 kg/m3) |
A | the rotor area swept (m2) |
V | current velocity (m/s) |
TWh | Terawatt per hour |
MWh | Megawatt per hour |
m/s | meter per second |
References
- Bishoge, K.O.; Zhang, L.; Mushi, G.W. The Potential Renewable Energy for Sustainable Development in Tanzania: A Review. Clean Technol. 2018, 1, 70–88. [Google Scholar] [CrossRef]
- Albornoz, P.C.; Gómez, H.Á.; Ramirez, V.; Guilbert, D. Forecast Optimization of Wind Speed in the North Coast of the Yucatan Peninsula, Using the Single and Double Exponential Method. Clean Technol. 2023, 5, 744–765. [Google Scholar] [CrossRef]
- Gennip, S.; Popova, E.; Yool, A.; Pecl, G.; Hobday, A.; Sorte, C. Going with the flow: The role of ocean circulation in global marine ecosystems under a changing climate. Glob. Chang. Biol. 2017, 23, 2602–2617. [Google Scholar] [CrossRef] [PubMed]
- Melikoğlu, M. Current status and future of ocean energy sources: A global review. Ocean Eng. 2018, 148, 563–573. [Google Scholar] [CrossRef]
- Doney, S.C.; Ruckelshaus, M.; Duffy, J.E.; Barry, J.P.; Chan, F.; English, C.A.; Galindo, M.H.; Grebmeier, M.J.; Hollowed, B.A.; Knowlton, N.; et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 2012, 4, 11–37. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, M.L.; Worm, B.; Fogarty, M.J.; Sarmiento, J.L.; Levin, S.A. Marine taxa track local climate velocities. Science 2013, 341, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Poloczanska, E.S.; Brown, C.J.; Sydeman, W.J.; Kiessling, W.; Schoeman, D.S.; Moore, P.J.; Richardson, A.J. Global imprint of climate change on marine life. Nat. Clim. Chang. 2013, 3, 919–925. [Google Scholar] [CrossRef]
- Hughes, T.P.; Barnes, M.L.; Bellwood, D.R.; Cinner, J.E.; Cumming, G.S.; Jackson, J.B.C.; Kleypas, J.; van de Leemput, I.A.; Lough, J.M.; Morrison, T.H.; et al. Coral reefs in the Anthropocene. Nature 2017, 546, 82–90. [Google Scholar] [CrossRef]
- Guldberg, H.O.; Poloczanska, S.E.; Skirving, W.; Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 2017, 4, 158. [Google Scholar] [CrossRef]
- Ray, P. Renewable energy and sustainability. Clean Technol. Environ. Policy 2019, 21, 1517–1533. [Google Scholar] [CrossRef]
- Sweidan, O.D. The environmental and energy policies to enable sustainable consumption and production in the gulf cooperation council countries. Clean Technol. Environ. Policy 2021, 23, 2639–2654. [Google Scholar] [CrossRef]
- Davide, M.; Uihlein, A. Ocean energy development in Europe: Current status and future perspectives. Int. J. Mar. Energy 2015, 11, 84–104. [Google Scholar] [CrossRef]
- Opperman, J.J.; Carvallo, J.P.; Kelman, R.; Schmitt, R.J.P.; Almeida, R.; Chapin, E.; Flecker, A.; Goichot, M.; Grill, G.; Harou, J.J.; et al. Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning. Front. Environ. Sci. 2023, 10, 1036653. [Google Scholar] [CrossRef]
- McMaster, R.; Noble, B.; Poelzer, G.; Menghwani, V. Local capacity for energy transition in northern and indigenous communities: Analysis of gwich’in communities in northwest territories, Canada. Arctic 2023, 76, 143–159. [Google Scholar] [CrossRef]
- Milone, D.; Curto, D.; Franzitta, V.; Guercio, A.; Cirrincione, M.; Mohammadi, A. An economic approach to size of a renewable energy mix in small islands. Energies 2022, 15, 2005. [Google Scholar] [CrossRef]
- Rahman, N.; Badshah, S.; Rafai, A.; Badshah, M. Literature Review of Ocean Current Turbine. Int. J. Sci. Eng. Res. 2014, 5, 11. [Google Scholar] [CrossRef]
- Hazim, S.; Salih, A.; Janan, T.M.; Ouatouati, E.A.; Ghennioui, A. Marine current energy assessment and the hydrodynamic design of the hydrokinetic turbine for the Moroccan Mediterranean Coast. Energy Explor. Exploit. 2021, 39, 717–737. [Google Scholar] [CrossRef]
- Martinez, C.; Rockel, S.; Vieux, C. European Overseas Coastal and Marine Protected Areas: Overview of Coastal and Marine Conservation Efforts in the European Union’s Overseas Countries and Territories and Outermost Regions; IUCN: Gland, Switzerland, 2017; Volume xxvii, 182p. [Google Scholar] [CrossRef]
- Morrison, R.; Zhang, J.; Urban, E.; Hall, J.; Ittekkot, V.; Avril, B.; Zuo, F. Developing human capital for successful implementtion of international marine scientific research projects. Mar. Pollut. Bull. 2013, 77, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.O.; Bograd, S.J.; Arrizabalaga, H.; Azevedo, J.L.; Barbeaux, S.J.; Barth, J.A.; Boyer, T.; Brodie, S.; Cárdenas, J.J.; Cross, S.; et al. Future ocean observations to connect climate, fisheries and marine ecosystems. Front. Mar. Sci. 2019, 6, 550. [Google Scholar] [CrossRef]
- Pelc, R.; Fujita, R. Renewable energy from the ocean. Mar. Policy 2002, 26, 471–479. [Google Scholar] [CrossRef]
- Borja, A.; Pouso, S.; Galparsoro, I.; Manca, E.; Vasquez, M.; Lu, W.; Yang, L.; Uriarte, A. Applying the China’s marine resource-environment carrying capacity and spatial development suitability approach to the Bay of Biscay (North-East Atlantic). Front. Mar. Sci. 2022, 9, 972448. [Google Scholar] [CrossRef]
- Chen, Z.; He, J.; Cao, S.; Lu, Z.; Lan, M.; Zheng, H.; Luo, G.; Zhang, F. Diversity and distribution of heterotrophic flagellates in seawater of the Powell Basin, Antarctic Peninsula. Polar Res. 2021, 40, 5389. [Google Scholar] [CrossRef]
- Lee, D.; Kim, G.Y.; Tac, D.; Yi, Y.M.; Choi, J.H.; Kim, J.H.; Lee, H.J.; Yoon, S.S. Diagnosis of Scoping and Type of Review on the Marine Environmental Impact Assessment for Ocean Energy Development Project. J. Korean Soc. Mar. Environ. Energy 2015, 18, 179–188. [Google Scholar] [CrossRef]
- Pisacane, G.; Sannino, G.; Carillo, A.; Struglia, M.; Bastianoni, S. Marine energy exploitation in the Mediterranean region: Steps forward and challenges. Front. Energy Res. 2018, 6, 109. [Google Scholar] [CrossRef]
- Soukissian, T.H.; Denaxa, D.; Karathanasi, F.; Prospathopoulos, A.; Sarantakos, K.; Iona, A.; Georgantas, K.; Mavrakos, A.S. Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives. Energies 2017, 10, 1512. [Google Scholar] [CrossRef]
- Melo, B.A.; Villate, L.J. Ocean Energy Systems Annual Report; The Executive Committee of Ocean Energy Systems: Lisbon, Portugal, 2016. Available online: https://tethys.pnnl.gov/sites/default/files/publications/OES-Annual-Report-2016.pdf (accessed on 13 December 2023).
- Rourke, F.; Boyle, F.; Reynolds, A. marine current energy devices: Current status and possible future applications in Ireland. Renew. Sustain. Energy Rev. 2010, 14, 1026–1036. [Google Scholar] [CrossRef]
- Gan, K.; Oki, T.; Gan, T.; Weis, T.; Yamazaki, D.; Schüttrumpf, H. Enhancing renewable energy systems, contributing to sustainable development goals of united nation and building resilience against climate change impacts. Energy Technol. 2023, 11, 11. [Google Scholar] [CrossRef]
- Hariss, S.; Saifaoui, D.; Hilmi, K.; Lilane, A.; Sossy, D.V. Exploitation of the Moroccan maritime potential in tidal energy. Mater. Today Proc. 2020, 30, 984–986. [Google Scholar] [CrossRef]
- Carillo, A.; Pisacane, G.; Struglia, M. Exploitation of an operative wave forecast system for energy resource assessment in the mediterranean sea. Front. Energy Res. 2022, 10, 944417. [Google Scholar] [CrossRef]
- Schroeder, K. Current Systems in the Mediterranean Sea. In Encyclopedia of Ocean Sciences, 3rd ed.; Cochran, K.J., Bokuniewicz, J.H., Yager, L.P., Eds.; Academic Press: Oxford, UK, 2019; Volume 3, pp. 219–227. [Google Scholar]
- Bonanno, A.; Zgozi, S.W.; Jarboui, O.; Mifsud, R.; Ceriola, L.; Basilone, G.; Arneri, E. Marine ecosystems and living resources in the Central Mediterranean Sea: An introduction. Hydrobiologia 2018, 821, 1–10. [Google Scholar] [CrossRef]
- Sakalli, A. Sea surface temperature change in the mediterranean sea under climate change: A linear model for simulation of the sea surface temperature up to 2100. Appl. Ecol. Environ. Res. 2017, 15, 707–716. [Google Scholar] [CrossRef]
- Anthony, J.E.; Marriner, N.; Morhange, C. Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: From progradation to destruction phase? Earth-Sci. Rev. 2014, 139, 336–361. [Google Scholar] [CrossRef]
- Coll, M.; Piroddi, C.; Steenbeek, J.; Kaschner, K.; Ben Rais Lasram, F.; Aguzzi, J.; Ballesteros, E.; Bianchi, C.N.; Corbera, J.; Dailianis, T.; et al. The Biodiversity of theMediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE 2010, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Buffet, G.G.; Krahmann, G.; Klaeschen, D.; Schroeder, K.; Sallares, V.; Papenberg, C.; Ranero, R.C.; Zitellini, N. Seismic Oceanography in the Tyrrhenian Sea: Thermohaline Staircases, Eddies, and Internal Waves. J. Geophys. Res. Ocean 2017, 122, 8503–8523. [Google Scholar] [CrossRef]
- Pascual, M.; Rives, B.; Schunter, C.; Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 2017, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Escudier, R.; Clementi, E.; Omar, E.; Cipollone, A.; Pistoia, J.; Aydogdu, A.; Drudi, M.; Grandi, A.; Lyubartsev, V.; Lecci, R.; et al. Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data Set]; Copernicus Monitoring Environment Marine Service (CMEMS): Ramonville-Saint-Agne, France, 2020. [Google Scholar] [CrossRef]
- Gurvan, M.; Bourdallé-Badie, R.; Chanut, J.; Clementi, E.; Coward, A.; Ethé, C.; Iovino, D.; Lea, D.; Lévy, C.; Lovato, T.; et al. NEMO Ocean Engine. Scientific Notes of IPSL Climate Modelling Center, v4.2, № 27; IPSL: Guyancourt, France, 2022. [Google Scholar] [CrossRef]
- GEBCO Bathymetric Compilation Group. The GEBCO_2021 Grid a Continuous Terrain Model of the Global Oceans and Land; NERC EDS British Oceanographic Data Centre NOC: Liverpool, UK, 2021. [Google Scholar] [CrossRef]
- Ranjbar, H.M.; Nasrazadani, A.S.; Kia, Z.H.; Gharali, K. Reaching the betz limit experimentally and numerically. Energy Equip. Syst. 2019, 7, 271–278. [Google Scholar] [CrossRef]
- Korte, A.; Windt, C.; Nils, G. Review assessment of the German tidal energy resource. J. Ocean Eng. Mar. Energy 2024, 10, 239–261. [Google Scholar] [CrossRef]
- Cucco, A.; Quattrocchi, G.; Olita, A.; Fazioli, L.; Ribotti, A.; Sinerchia, M.; Tedesco, C.; Sorgente, R. Hydrodynamic modelling of coastal seas: The role of tidal dynamics in the Messina Strait, Western Mediterranean Sea. Nat. Hazards Earth Syst. Sci. 2016, 16, 1553–1569. [Google Scholar] [CrossRef]
- Kontoyiannis, H.; Panagiotopoulos, M.; Soukissian, T. The Euripus tidal stream at Halkida/Greece: A practical, inexpensive approach in assessing the hydrokinetic renewable energy from field measurements in a tidal channel. J. Ocean Eng. Mar. Energy 2015, 1, 325–335. [Google Scholar] [CrossRef]
- Hazim, S.; Ouatouati, E.A.; Janan, T.M.; Ghennioui, A. Marine Currents Energy Resource Characterization for Morocco. Energy Procedia 2019, 157, 1037–1049. [Google Scholar] [CrossRef]
- Orhan, K.; Mayerle, R.; Pandoe, W. Assesment of energy production potential from tidal stream currents in Indonesia. Energy Procedia 2015, 76, 7–16. [Google Scholar] [CrossRef]
Current Velocity (m/s) | Location (Latitude, Longitude) | Potential Energy Production (GWh/Year) |
---|---|---|
0.467262 | 27.04167, 34.9375 | 9.98 |
0.46427 | 35.79167, 35.1875 | 9.79 |
0.46029 | 8.791667, 43.9375 | 9.54 |
0.4577 | 33.91667, 35.9375 | 9.38 |
0.457215 | 5.208333, 43.02083 | 9.35 |
0.45688 | 9.291667, 37.52083 | 9.33 |
0.45376 | 35.83333, 36.0625 | 9.14 |
0.44874 | 33.54167, 35.89583 | 8.84 |
0.44687 | 35.75, 35.97917 | 8.73 |
0.4455 | 32.1667, 36.0625 | 8.65 |
0.44012 | 29.66667, 35.89583 | 8.34 |
0.43728 | 35.66667, 35.47717 | 8.18 |
0.43711 | 23.125, 32.85417 | 8.17 |
0.43077 | 29.625, 33.77083 | 7.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gucel, M.U.; Sakalli, A. Analyzing the Mediterranean Sea’s Dynamic Current System and Modeling of Renewable Current Energy Potential. J. Mar. Sci. Eng. 2024, 12, 671. https://doi.org/10.3390/jmse12040671
Gucel MU, Sakalli A. Analyzing the Mediterranean Sea’s Dynamic Current System and Modeling of Renewable Current Energy Potential. Journal of Marine Science and Engineering. 2024; 12(4):671. https://doi.org/10.3390/jmse12040671
Chicago/Turabian StyleGucel, Mehmet Ugur, and Abdulla Sakalli. 2024. "Analyzing the Mediterranean Sea’s Dynamic Current System and Modeling of Renewable Current Energy Potential" Journal of Marine Science and Engineering 12, no. 4: 671. https://doi.org/10.3390/jmse12040671
APA StyleGucel, M. U., & Sakalli, A. (2024). Analyzing the Mediterranean Sea’s Dynamic Current System and Modeling of Renewable Current Energy Potential. Journal of Marine Science and Engineering, 12(4), 671. https://doi.org/10.3390/jmse12040671