ADNet: A Real-Time Floating Algae Segmentation Using Distillation Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Semantic Segmentation Distillation
2.2. Channel Purification Module
2.3. Multi-Scale Feature Fusion Module
2.4. Position Purification Module
2.5. Distillation Loss
2.6. Experiment Setups
3. Results
3.1. Datasets
3.2. Evaluation of Model Performance
3.3. Ablation Study
3.3.1. The impact of CPM
3.3.2. The Impact of Multi-Scale Feature Fusion
3.3.3. The Impact of Distillation Branch Selection
4. Discussion
5. Conclusions
- (1)
- We introduce the distillation theory into the floating algae monitoring task in complex marine environments.
- (2)
- A novel channel purification module named CPM is proposed to simultaneously enhance algae semantics while purifying interference features.
- (3)
- We propose a lightweight multi-scale feature fusion network, termed L-MsFFN, to enhance the modeling capability of multi-scale features, reducing the scale-capturing gap between the transformers and CNNs.
- (4)
- A novel position purification module, termed PPM, is introduced to replace the conventional DPA approach during the fusion stage, enhancing the effectiveness and accuracy of L-MsFFN in controlling features across different pyramids.
- (5)
- Extensive experimental results demonstrate that our ADNet can achieve state-of-the-art performance compared to other methods in the floating algae segmentation task.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cuevas, E.; Uribe-Martínez, A.; Liceaga-Correa, M.A. A satellite remote-sensing multi-index approach to discriminate pelagic Sargassum in the waters of the Yucatan Peninsula, Mexico. Int. J. Remote Sens. 2018, 39, 3608–3627. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, Z.; Liu, D.; Fu, M.; Yuan, C.; Yan, T. Harmful macroalgal blooms (HMBs) in China’s coastal water: Green and golden tides. Harmful Algae 2021, 107, 102061. [Google Scholar] [CrossRef] [PubMed]
- Ananias, P.H.M.; Negri, R.G. Anomalous behaviour detection using one-class support vector machine and remote sensing images: A case study of algal bloom occurrence in inland waters. Int. J. Digit. Earth 2021, 14, 921–942. [Google Scholar] [CrossRef]
- Barrientos-Espillco, F.; Gascó, E.; López-González, C.I.; Gómez-Silva, M.J.; Pajares, G. Semantic segmentation based on Deep learning for the detection of Cyanobacterial Harmful Algal Blooms (CyanoHABs) using synthetic images. Appl. Soft Comput. 2023, 141, 110315. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.F.; Kong, F.Z.; Yu, R.C.; Guo, Y.; Ren, Y.B. AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae from Optical and SAR Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2782–2796. [Google Scholar] [CrossRef]
- Valentini, N.; Yann, B. Assessment of a smartphone-based camera system for coastal image segmentation and sargassum monitoring. J. Mar. Sci. Eng. 2020, 8, 23. [Google Scholar] [CrossRef]
- Wan, X.C.; Wan, J.H.; Xu, M.M.; Liu, S.W.; Sheng, H.; Chen, Y.L.; Zhang, X.Y. Enteromorpha coverage information extraction by 1D-CNN and Bi-LSTM networks considering sample balance from GOCI images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9306–9317. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; An, Z.; Jiang, Z.; Ma, Y. A novel spectral-unmixing-based green algae area estimation method for GOCI data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 437–449. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C. To what extent can Ulva and Sargassum be detected and separated in satellite imagery? Harmful Algae 2021, 103, 102001. [Google Scholar] [CrossRef]
- Xing, Q.G.; An, D.; Zheng, X.; Wei, Z.; Wang, X.; Li, L.; Tian, L.; Chen, J. Monitoring seaweed aquaculture in the Yellow Sea with multiple sensors for managing the disaster of macroalgal blooms. Remote Sens. Environ. 2019, 231, 111279. [Google Scholar] [CrossRef]
- Cui, T.W.; Liang, X.J.; Gong, J.L.; Tong, C.; Xiao, Y.F.; Liu, R.J.; Zhang, X.; Zhang, J. Assessing and refining the satellite-derived massive green macro-algal coverage in the Yellow Sea with high resolution images. ISPRS J. Photogramm. Remote Sens. 2018, 144, 315–324. [Google Scholar] [CrossRef]
- Yang, C.; Tan, Z.; Li, Y.; Shen, M.; Duan, H. A comparative analysis of machine learning methods for algal Bloom detection using remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7953–7967. [Google Scholar] [CrossRef]
- Podlejski, W.; Descloitres, J.; Chevalier, C.; Minghelli, A.; Lett, C.; Berline, L. Filtering out false Sargassum detections using context features. Front. Mar. Sci. 2022, 9, 960939. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Dai, X.; Chen, Y.; Yang, J.; Zhang, P.; Yuan, L.; Zhang, L. Dynamic detr: End-to-end object detection with dynamic attention. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 2988–2997. [Google Scholar]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [Google Scholar] [CrossRef]
- He, K.M.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: High quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1483–1498. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Pang, J.; Wang, J.; Xiong, Y.; Li, X.; Sun, S.; Lin, D. Hybrid task cascade for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4974–4983. [Google Scholar]
- Park, J.; Baek, J.; Kim, J.; You, K.; Kim, K. Deep learning-based algal detection model development considering field application. Water 2022, 14, 1275. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Yang, T.; Zhang, X.; Cheng, J.; Sun, J. You only look one-level feature. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 13039–13048. [Google Scholar]
- Liu, D.; Wang, P.; Cheng, Y.; Bi, H. An improved algae-YOLO model based on deep learning for object detection of ocean microalgae considering aquacultural lightweight deployment. Front. Mar. Sci. 2022, 9, 1070638. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Wang, X.; Wang, L.; Chen, L.; Zhang, F.; Chen, K.; Zhang, Z.; Zhao, L. AlgaeMask: An instance segmentation network for floating algae detection. J. Mar. Sci. Eng. 2022, 10, 1099. [Google Scholar] [CrossRef]
- Lee, Y.; Hwang, J.W.; Lee, S.; Bae, Y.; Park, J. An energy and GPU-computation efficient backbone network for real-time object detection. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; p. 00103. [Google Scholar]
- Zou, Y.; Wang, X.; Wang, L.; Chen, K.; Ge, Y.; Zhao, L. A High-Quality Instance-Segmentation Network for Floating-Algae Detection Using RGB Images. Remote Sens. 2022, 14, 6247. [Google Scholar] [CrossRef]
- Wang, S.K.; Liu, L.; Yu, C.; Sun, Y.; Gao, F.; Dong, J. Accurate Ulva prolifera regions extraction of UAV images with superpixel and CNNs for ocean environment monitoring. Neurocomputing 2019, 348, 158–168. [Google Scholar] [CrossRef]
- Arellano-Verdejo, J.; Lazcano-Hernandez, H.E.; Cabanillas-Teran, N. ERISNet: Deep neural network for Sargassum detection along the coastline of the Mexican Caribbean. PeerJ 2019, 7, e6842. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.G.; Zhang, H.Q.; Jing, W.; Liu, H.F.; Cui, J.M. SRSe-net: Super-resolution-based semantic segmentation network for green tide extraction. Remote Sens. 2022, 14, 710. [Google Scholar] [CrossRef]
- Ronneberger, O.; Philipp, F.; Thomas, B. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Liu, R.; Cui, B.; Dong, W.; Fang, X.; Xiao, Y.; Zhao, X.; Wang, Q. A refined deep-learning-based algorithm for harmful-algal-bloom remote-sensing recognition using Noctiluca scintillans algal bloom as an example. J. Hazard. Mater. 2024, 467, 133721. [Google Scholar] [CrossRef]
- Yang, C.; Zhou, H.; An, Z.; Jiang, X.; Xu, Y.; Zhang, Q. Cross-image relational knowledge distillation for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 12319–12328. [Google Scholar]
- Dong, Z.; Gao, G.; Liu, T.; Gu, Y.; Zhang, X. Distilling Segmenters from CNNs and Transformers for Remote Sensing Images Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5613814. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, D.; Yu, C.; Chu, X.; Sang, N.; Gao, C. SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; pp. 6378–6386. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; p. 00246. [Google Scholar]
- Hong, Y.; Pan, H.; Sun, W.; Jia, Y. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes. arXiv 2021, arXiv:2101.06085. [Google Scholar]
- Fan, M.; Lai, S.; Huang, J.; Wei, X.; Chai, Z.; Luo, J.; Wei, X. Rethinking bisenet for real-time semantic segmentation. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 9716–9725. [Google Scholar]
Software Name | Version Numbers |
---|---|
Ubuntu | 18.04 |
CUDA | 12.1 |
cuDNN | 8.9.3 |
Python | 3.8.5 |
Pytorch | 1.13.1 |
MMCV | 2.0.1 |
MMSegmentation | 1.2.2 |
MMDeploy | 1.3.1 |
Open Neural Network Exchange (ONNX) | 1.15.0 |
ONNX-RunTime-GPU | 1.8.1 |
TensorRT | 8.6.1 post1 |
Index | Camera Name | Number of Cameras | Longitude (°N) | Latitude (°E) |
---|---|---|---|---|
1 | Binhai North District H2#400 MW | 2 | 34.4 | 120.3 |
2 | SPIC Binhai South H3#300 MW | 2 | 34.3 | 120.6 |
3 | Jiangsu Rudong H5# | 3 | 32.7 | 121.7 |
4 | Jiangsu Rudong H14# | 3 | 32.8 | 121.4 |
5 | Three Gorges New Energy Jiangsu Dafeng 300 MW | 2 | 33.3 | 121.1 |
6 | Huaneng Jiangsu Dafeng 300 MW | 2 | 33.1 | 121.4 |
7 | Dafeng Wharf | 2 | 33.2 | 120.8 |
Method Name | Backbone Name | Learning Rate | Iterations | Batch Size |
---|---|---|---|---|
BiSeNetV2 | BiSeNetV2 | 0.01 | 80,000 | 16 |
GCNet [39] | R-50 | 0.01 | 120,000 | 8 |
R-101 | 0.005 | 150,000 | 4 | |
OCRNet [40] | HRNet-W18-Small | 0.01 | 40,000 | 32 |
HRNet-W18 | 0.01 | 80,000 | 24 | |
HRNet-W48 | 0.005 | 120,000 | 8 | |
STDC [41] | STDC1 | 0.001 | 40,000 | 64 |
STDC2 | 0.001 | 40,000 | 64 | |
Segformer | MIT-B0 | 0.01 | 80,000 | 16 |
MIT-B1 | 0.01 | 80,000 | 16 | |
MIT-B2 | 0.01 | 120,000 | 12 | |
MIT-B3 | 0.0005 | 150,000 | 8 | |
MIT-B4 | 0.0001 | 160,000 | 8 | |
MIT-B5 | 0.001 | 240,000 | 4 | |
SCTNet | S-Seg50 | 0.01 | 80,000 | 16 |
S-Seg75 | 0.01 | 80,000 | 16 | |
B-Seg50 | 0.01 | 120,000 | 16 | |
B-Seg75 | 0.005 | 120,000 | 8 | |
B-Seg100 | 0.005 | 120,000 | 8 | |
ADNet | S-Seg50 | 0.01 | 80,000 | 16 |
S-Seg75 | 0.01 | 80,000 | 16 | |
B-Seg50 | 0.01 | 120,000 | 16 | |
B-Seg75 | 0.005 | 120,000 | 8 | |
B-Seg100 | 0.005 | 120,000 | 8 |
Method Name | Backbone Name | Params (MB) | mIoU (%) | mIoU FP16 (%) | FPS (Torch CUDA) | Inference Time (ms) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Torch CUDA | TRT CUDA | TRT CUDA FP16 | ONNX CUDA | ONNX CUDA FP16 | ONNX CPU | ||||||
BiSeNetV2 | BiSeNetV2 | 14.12 | 40.4 | 39.9 | 98 | 10.2 | 8.1 | 7.2 | 12.2 | 10.7 | 17.1 |
GCNet | R-50 | 47.33 | 48.3 | 48.1 | 6 | 164.4 | 52.0 | 51.1 | 106.7 | 95.3 | 112.5 |
R-101 | 65.44 | 50.8 | 50.3 | 4 | 245.7 | 74.6 | 71.2 | 129.5 | 125.3 | 139.6 | |
OCRNet | HRNet-W18-Small | 6.1 | 40.2 | 39.7 | 23 | 43.1 | 17.7 | 16.2 | 30.3 | 28.5 | 37.7 |
HRNet-W18 | 11.5 | 45.6 | 45.1 | 14 | 69.4 | 23.1 | 21.5 | 45.3 | 48.9 | 47.6 | |
HRNet-W48 | 67.1 | 52.5 | 51.9 | 11 | 84.4 | 54.3 | 51.5 | 87.2 | 87.3 | 89.2 | |
STDC | STDC1 | 8.2 | 38.2 | 35.4 | 120 | 8.3 | 3.9 | 3.8 | 17.5 | 14.9 | 19.2 |
STDC2 | 12.1 | 41.3 | 37.2 | 82 | 12.1 | 5.2 | 5.2 | 25.8 | 19.1 | 26.3 | |
Segformer | MIT-B0 | 3.5 | 49.4 | 49.0 | 43 | 23.2 | 12.9 | 12.1 | 30.9 | 21.3 | 35.2 |
MIT-B1 | 13.1 | 51.8 | 51.5 | 32 | 30.4 | 17.3 | 16.5 | 31.4 | 20.5 | 35.7 | |
MIT-B2 | 23.6 | 55.1 | 54.7 | 20 | 49.8 | 28.6 | 27.2 | 47.9 | 29.5 | 51.3 | |
MIT-B3 | 42.5 | 59.7 | 59.6 | 13 | 72.3 | 42.2 | 41.7 | 70.1 | 39.5 | 79.8 | |
MIT-B4 | 58.5 | 62.8 | 62.5 | 10 | 99.9 | 59.1 | 58.6 | 95.5 | 51.6 | 110.7 | |
MIT-B5 | 78.2 | 64.9 | 64.7 | 8 | 118.7 | 71.8 | 70.2 | 115.3 | 59.8 | 135.9 | |
SCTNet | S-Seg50 | 4.6 | 51.5 | 51.1 | 105 | 9.5 | 9.2 | 9.1 | 19.2 | 8.7 | 23.0 |
S-Seg75 | 4.6 | 53.7 | 53.2 | 97 | 10.3 | 9.4 | 9.5 | 19.3 | 9.9 | 22.9 | |
B-Seg50 | 17.4 | 55.3 | 55.1 | 89 | 11.2 | 10.7 | 10.5 | 23.0 | 13.1 | 25.2 | |
B-Seg75 | 17.4 | 57.2 | 56.8 | 74 | 13.5 | 12.3 | 12.6 | 24.1 | 13.8 | 26.2 | |
B-Seg100 | 17.4 | 58.4 | 57.9 | 51 | 19.6 | 15.6 | 15.4 | 31.7 | 20.6 | 35.6 | |
ADNet | S-Seg50 | 6.5 | 56.2 | 55.9 | 78 | 12.7 | 11.6 | 12.1 | 21.1 | 10.7 | 21.4 |
S-Seg75 | 6.5 | 57.9 | 56.8 | 76 | 13.1 | 12.3 | 12.6 | 20.5 | 11.2 | 22.1 | |
B-Seg50 | 19.3 | 59.6 | 58.7 | 72 | 13.8 | 13.1 | 14.3 | 21.8 | 14.3 | 25.7 | |
B-Seg75 | 19.3 | 61.3 | 60.6 | 61 | 16.3 | 14.2 | 14.2 | 26.4 | 18.3 | 29.6 | |
B-Seg100 | 19.3 | 62.2 | 61.7 | 45 | 21.9 | 16.5 | 15.4 | 33.2 | 23.1 | 37.5 |
Method Name | Backbone Name | Strategies | mIoU (%) |
---|---|---|---|
ADNet | S-Seg50 | w/o CPM | 52.7 |
w/o FEB | 54.1 | ||
w/o IPB | 53.5 | ||
w/CPM | 56.2 | ||
S-Seg75 | w/o CPM | 55.6 | |
w/o FEB | 56.7 | ||
w/o IPB | 55.9 | ||
w/CPM | 57.9 | ||
B-Seg50 | w/o CPM | 57.2 | |
w/o FEB | 58.8 | ||
w/o IPB | 57.9 | ||
w/CPM | 59.6 | ||
B-Seg75 | w/o CPM | 58.6 | |
w/o FEB | 60.4 | ||
w/o IPB | 59.1 | ||
w/CPM | 61.3 | ||
B-Seg100 | w/o CPM | 59.8 | |
w/o FEB | 61.5 | ||
w/o IPB | 60.3 | ||
w/CPM | 62.2 |
Method Name | Parameters (MB) | FLOPs (G) | Inference Time (ms) |
---|---|---|---|
SCTNet (Student) | 17.4 | 17.5 | 6.7 |
BiFPN | 0.14 (0.8%) | 7.36 (42.1%) | 3.2 (47.8%) |
Ms-BiFPN | 0.25 (1.4%) | 7.42 (42.4%) | 3.9 (58.2%) |
L-MsFPN | 0.50 (2.9%) | 1.79 (10.2%) | 1.5 (22.4%) |
Network Name | Backbone Name | Fusion Method | PPM | mIoU (%) | (%) | (%) | (%) | Inference Time (ms) |
---|---|---|---|---|---|---|---|---|
ADNet | S-Seg50 | L-MsFFN | 56.2 | 69.3 | 59.1 | 40.2 | 12.7 | |
53.9 | 66.8 | 56.1 | 38.8 | 11.5 | ||||
BiFPN | 56.1 | 69.8 | 60.3 | 38.2 | 22.1 | |||
54.3 | 67.6 | 56.4 | 38.9 | 19.2 | ||||
S-Seg75 | L-MsFFN | 57.9 | 69.5 | 61.1 | 43.1 | 13.1 | ||
55.3 | 66.8 | 59.4 | 39.7 | 11.7 | ||||
BiFPN | 57.4 | 69.4 | 63.2 | 39.6 | 23.4 | |||
55.7 | 67.1 | 59.9 | 40.1 | 19.6 | ||||
B-Seg50 | L-MsFFN | 59.6 | 69.6 | 64.9 | 44.3 | 13.8 | ||
58.7 | 68.1 | 66.8 | 41.2 | 12.4 | ||||
BiFPN | 60.2 | 70.1 | 68.1 | 42.4 | 24.8 | |||
58.6 | 68.3 | 66.2 | 41.3 | 20.4 | ||||
B-Seg75 | L-MsFFN | 61.3 | 70.2 | 65.8 | 47.9 | 16.3 | ||
59.9 | 69.8 | 66.7 | 43.2 | 14.1 | ||||
BiFPN | 61.7 | 70.4 | 68.6 | 46.1 | 27.6 | |||
59.6 | 69.9 | 68.4 | 40.5 | 23.4 | ||||
B-Seg100 | L-MsFFN | 62.2 | 70.5 | 66.3 | 49.8 | 21.9 | ||
60.3 | 68.5 | 65.9 | 46.5 | 20.1 | ||||
BiFPN | 62.1 | 70.7 | 67.1 | 48.5 | 33.1 | |||
60.5 | 69.2 | 66.4 | 45.9 | 29.2 |
Backbone Name | Method Name | Distillation Strategy | mIoU (%) | (%) | (%) | (%) |
---|---|---|---|---|---|---|
B-Seg100 | SCTNet | 1 | 57.3 | 63.1 | 60.6 | 48.2 |
2 | 59.2 | 67.5 | 64.5 | 45.9 | ||
3 | 58.4 | 67.8 | 63.6 | 43.8 | ||
4 | 56.1 | 68.2 | 59.9 | 40.2 | ||
5 | 53.7 | 65.4 | 54.2 | 41.5 | ||
6 | 52.1 | 63.9 | 50.7 | 41.7 | ||
ADNet | 1 | 60.9 | 66.3 | 63.8 | 52.6 | |
2 | 62.2 | 70.5 | 66.3 | 49.8 | ||
3 | 61.3 | 71.2 | 65.5 | 47.2 | ||
4 | 58.9 | 71.6 | 61.2 | 43.9 | ||
5 | 57.6 | 65.4 | 64.8 | 42.6 | ||
6 | 55.4 | 63.2 | 62.5 | 40.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wang, L. ADNet: A Real-Time Floating Algae Segmentation Using Distillation Network. J. Mar. Sci. Eng. 2024, 12, 852. https://doi.org/10.3390/jmse12060852
Xu J, Wang L. ADNet: A Real-Time Floating Algae Segmentation Using Distillation Network. Journal of Marine Science and Engineering. 2024; 12(6):852. https://doi.org/10.3390/jmse12060852
Chicago/Turabian StyleXu, Jingjing, and Lei Wang. 2024. "ADNet: A Real-Time Floating Algae Segmentation Using Distillation Network" Journal of Marine Science and Engineering 12, no. 6: 852. https://doi.org/10.3390/jmse12060852
APA StyleXu, J., & Wang, L. (2024). ADNet: A Real-Time Floating Algae Segmentation Using Distillation Network. Journal of Marine Science and Engineering, 12(6), 852. https://doi.org/10.3390/jmse12060852