Coastal Erosion Dynamics and Protective Measures in the Vietnamese Mekong Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Landsat Images Collection and Processing
2.1.2. Calculation of Shoreline Change Rate
2.2. Field Measurement
2.2.1. Wave Measurement in Front and Behind Breakwaters
- Location A: Busadco, centrifugal pile–rock and semi-circular breakwaters at Hon Da Bac, Ca Mau;
- Location B: Coastal area with and without mangrove belt, centrifugal pile–rock breakwaters at Vinh Chau, Soc Trang;
- Location C: Busaco and centrifugal pile–rock breakwaters at Ngoc Hien, Ca Mau.
2.2.2. Evaluating the Effectiveness of Wave Reduction
2.2.3. Deposition/Erosion Measurement
2.2.4. Monitoring Settlement of Breakwaters
2.3. Breakwater Structure Stability Analysis
- FS > 1 indicates that the structure is in a stable state;
- FS = 1 implies the structure is at the limit of instability;
- FS < 1 indicates that the structure is in an unstable state, posing a high risk of sliding.
3. Results and Discussion
3.1. Shoreline Change
3.2. Coastal Protection Solutions
3.3. Wave Height and Wave Reduction Analysis
3.3.1. Wave Characteristics
3.3.2. Wave Reduction Effect
3.4. Depostion Analysis
3.5. Settlement of Pile–Rock Breakwater Components
3.6. Stability Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minh, H.V.T.; Van Ty, T.; Avtar, R.; Kumar, P.; Le, K.N.; Ngan, N.V.C.; Khanh, L.H.; Nguyen, N.C. Downes Implications of climate change and drought on water requirements in a semi-mountainous region of the Vietnamese Mekong Delta. Environ. Monit. Assess. 2022, 194 (Suppl. 2), 766. [Google Scholar] [CrossRef]
- Ty, T.V.; Lavane, K.; Nguyen, P.C.; Downes, N.K.; Nam, N.D.G.; Minh, H.V.T.; Kumar, P. Assessment of relationship between climate change, drought, and land use and land cover changes in a semi-Mountainous area of the Vietnamese Mekong delta. Land 2022, 11, 2175. [Google Scholar] [CrossRef]
- Esteban, M.; Takagi, H.; Thao, N.D. Tropical cyclone damage to coastal defenses: Future influence of climate change and sea level rise on shallow coastal areas in Southern Vietnam. In Coastal Disasters and Climate Change in Vietnam; Elsevier: Amsterdam, The Netherlands, 2014; pp. 233–255. [Google Scholar]
- Minh, H.V.T.; Lavane, K.; Ty, T.V.; Downes, N.K.; Hong, T.T.K.; Kumar, P. Evaluation of the Impact of Drought and Saline Water Intrusion on Rice Yields in the Mekong Delta, Vietnam. Water 2022, 14, 3499. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Kumar, P.; Van Toan, N.; Nguyen, P.C.; Van Ty, T.; Lavane, K.; Tam, N.T.; Downes, N.K. Deciphering the relationship between meteorological and hydrological drought in Ben Tre province, Vietnam. Nat. Hazards 2024, 120, 5869–5894. [Google Scholar] [CrossRef]
- Ta, T.K.O.; Nguyen, V.L.; Tateishi, M.; Kobayashi, I.; Tanabe, S.; Saito, Y. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam. Quat. Sci. Rev. 2002, 21, 1807–1819. [Google Scholar] [CrossRef]
- Veettil, B.K.; Ward, R.D.; Dung, N.T.K.; Van, D.D.; Quang, N.X.; Hoai, P.N.; Hoang, N.-D. The use of bioshields for coastal protection in Vietnam: Current status and potential. Reg. Stud. Mar. Sci. 2021, 47, 101945. [Google Scholar] [CrossRef]
- Tri, V.P.D.; Yarina, L.; Nguyen, H.Q.; Downes, N.K. Progress toward resilient and sustainable water management in the Vietnamese Mekong Delta. Wiley Interdiscip. Rev. Water 2023, 10, e1670. [Google Scholar] [CrossRef]
- Besset, M.; Gratiot, N.; Anthony, E.J.; Bouchette, F.; Goichot, M.; Marchesiello, P. Mangroves and shoreline erosion in the Mekong River delta, Viet Nam. Estuar. Coast. Shelf Sci. 2019, 226, 106263. [Google Scholar] [CrossRef]
- Marchesiello, P.; Nguyen, N.M.; Gratiot, N.; Loisel, H.; Anthony, E.J.; San Dinh, C.; Nguyen, T.; Almar, R.; Kestenare, E. Erosion of the coastal Mekong delta: Assessing natural against man induced processes. Cont. Shelf Res. 2019, 181, 72–89. [Google Scholar] [CrossRef]
- Nguyet-Minh, N.; Cong-San, D.; Van-Duong, D.; Xuan-Tu, L.; Nestmann, F.; Zemann, M.; Thai-Duong, V.H.; Cong-Dan, T. Evaluating the Effectiveness of Existing Coastal Protection Measures in Mekong Delta. In Proceedings of the APAC 2019, Hanoi, Vietnam, 25–28 September 2019; Springer: Singapore, 2020; pp. 1419–1429. [Google Scholar]
- Zoccarato, C.; Minderhoud, P.S.; Teatini, P. The role of sedimentation and natural compaction in a prograding delta: Insights from the mega Mekong delta, Vietnam. Sci. Rep. 2018, 8, 11437. [Google Scholar] [CrossRef]
- Nguyen, V.L.; Ta, T.K.O.; Tateishi, M. Late Holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam. J. Asian Earth Sci. 2000, 18, 427–439. [Google Scholar] [CrossRef]
- Liu, J.P.; DeMaster, D.J.; Nguyen, T.T.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Li, X. Stratigraphic formation of the Mekong River Delta and its recent shoreline changes. Oceanography 2017, 30, 72–83. [Google Scholar] [CrossRef]
- Coumou, L. Relating Land Subsidence to Land Use Through Machine Learning Using Remote-Sensing Derived Data: A Case Study in the Mekong Delta, Vietnam. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2017. [Google Scholar]
- Pham, H.T.; Bui, L.T. Mechanism of erosion zone formation based on hydrodynamic factor analysis in the Mekong Delta coast, Vietnam. Environ. Technol. Innov. 2023, 30, 103094. [Google Scholar] [CrossRef]
- Van Tho, N. Coastal erosion, river bank erosion and landslides in the Mekong Delta: Causes, effects and solutions. In Geotechnics for Sustainable Infrastructure Development; Springer: Berlin/Heidelberg, Germany, 2020; pp. 957–962. [Google Scholar]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef] [PubMed]
- Thanh, T.D.; Saito, Y.; Huy, D.V.; Nguyen, V.L.; Ta, T.K.O.; Tateishi, M. Regimes of human and climate impacts on coastal changes in Vietnam. Reg. Environ. Chang. 2004, 4, 49–62. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Avtar, R.; Mohan, G.; Misra, P.; Kurasaki, M. Monitoring and mapping of rice cropping pattern in flooding area in the Vietnamese Mekong delta using Sentinel-1A data: A case of an Giang province. ISPRS Int. J. Geo-Inf. 2019, 8, 211. [Google Scholar] [CrossRef]
- Phan, M.H.; Stive, M.J. Managing mangroves and coastal land cover in the Mekong Delta. Ocean Coast. Manag. 2022, 219, 106013. [Google Scholar] [CrossRef]
- Takagi, H.; Thao, N.D.; Esteban, M.; Tam, T.T.; Knaepen, H.L.; Mikami, T.; Yamamoto, L. Coastal Disaster Risk in Southern Vietnam. In The Problems of Coastal Development and the Need for Better Coastal Planning; UNISDR, GAR: Geneva, Switzerland, 2013. [Google Scholar]
- Pham, T.; Vien, N.; Vo, Q.; Tang, T.; Nguyen, T.; Tran, N.; Nguyen, T.; Nguyen, T.; Nguyen, N. Opportunities and Challenges for Mangrove Restoration in the Mekong Delta: Status, Policies and Stakeholder Outlook; CIFOR: Bogor, Indonesia, 2022. [Google Scholar]
- Le Xuan, T.; Ba, H.T.; Thanh, V.Q.; Wright, D.P.; Tanim, A.H.; Anh, D.T. Evaluation of coastal protection strategies and proposing multiple lines of defense under climate change in the Mekong Delta for sustainable shoreline protection. Ocean Coast. Manag. 2022, 228, 106301. [Google Scholar] [CrossRef]
- Vu, H.T.D.; Zemann, M.; Oberle, P.; Seidel, F.; Nestmann, F. Investigating Wave Transmission through Curtain Wall Breakwaters under Variable Conditions. J. Coast. Hydraul. Struct. 2022, 2, 1–30. [Google Scholar] [CrossRef]
- Le Xuan, T.; Vu, H.T.D.; Oberle, P.; Dang, T.D.; Tran Ba, H.; Le Manh, H. Hydrodynamics and wave transmission through a hollow triangle breakwater. Estuar. Coast. Shelf Sci. 2024, 302, 108765. [Google Scholar] [CrossRef]
- Le Xuan, T.; Ba, H.T.; Le Manh, H.; Do Van, D.; Nguyen, N.M.; Wright, D.P.; Bui, V.H.; Mai, S.T.; Anh, D.T. Hydraulic performance and wave transmission through pile-rock breakwaters. Ocean Eng. 2020, 218, 108229. [Google Scholar] [CrossRef]
- Ty, T.V.; Duy, D.V.; Hong, H.T.C.; Nam, N.Đ.; Minh, H.V.T.; Thinh, L.V.; Ngan, N.V.C.; Trung, N.H. Monitoring Shoreline Changes in the Vietnamese Mekong Delta Coastal Zone Using Satellite Images and Wave Reduction Structures. In European Spatial Data for Coastal and Marine Remote Sensing, Proceedings of International Conference EUCOMARE 2022, Saint Malo, France, 2022; Simona, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 171–191. [Google Scholar]
- Molina, R.; Anfuso, G.; Manno, G.; Gracia Prieto, F.J. The Mediterranean Coast of Andalusia (Spain): Medium-Term Evolution and Impacts of Coastal Structures. Sustainability 2019, 11, 3539. [Google Scholar] [CrossRef]
- Laksono, F.A.T.; Borzi, L.; Distefano, S.; Czirok, L.; Halmai, Á.; Di Stefano, A.; Kovács, J. Shoreline change dynamics along the Augusta coast, eastern Sicily, South Italy. Earth Surf. Process. Landf. 2023, 48, 2630–2641. [Google Scholar] [CrossRef]
- Alberico, I.; Casalbore, D.; Pelosi, N.; Tonielli, R.; Calidonna, C.; Dominici, R.; De Rosa, R. Remote Sensing and Field Survey Data Integration to Investigate on the Evolution of the Coastal Area: The Case Study of Bagnara Calabra (Southern Italy). Remote Sens. 2022, 14, 2459. [Google Scholar] [CrossRef]
- Vietnemse_Government. Decision No. 379/QD-TTg 2021 the National Strategy on Natural Disaster Prevention through 2030, with a Vision toward 2050; Vietnemse_Government: Hanoi, Vietnam, 2021; p. 21.
- Ta, T.K.O.; Nguyen, V.L.; Tateishi, M.; Kobayashi, I.; Saito, Y. Holocene delta evolution and depositional models of the Mekong River delta, southern Vietnam. In River Deltas—Concepts, Models, and Examples; Giosan, L., Bhattacharya, J.P., Eds.; SEPM Society for Sedimentary Geology: Claremore, OK, USA, 2005; pp. 453–466. [Google Scholar]
- Anthony, E.J.; Dussouillez, P.; Dolique, F.; Besset, M.; Brunier, G.; Nguyen, V.L.; Goichot, M. Morphodynamics of an eroding beach and foredune in the Mekong River delta: Implications for deltaic shoreline change. Cont. Shelf Res. 2017, 147, 155–164. [Google Scholar] [CrossRef]
- Tamura, T.; Saito, Y.; Bateman, M.D.; Nguyen, V.L.; Ta, T.K.O.; Matsumoto, D. Luminescence dating of beach ridges for characterizing multi-decadal to centennial deltaic shoreline changes during Late Holocene, Mekong River delta. Mar. Geol. 2012, 326–328, 140–153. [Google Scholar] [CrossRef]
- Tamura, T.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Bateman, M.D.; Matsumoto, D.; Yamashita, S. Origin and evolution of interdistributary delta plains; insights from Mekong River delta. Geology 2012, 40, 303–306. [Google Scholar] [CrossRef]
- Xue, Z.; Liu, J.P.; DeMaster, D.; Nguyen, V.L.; Ta, T.K.O. Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam. Mar. Geol. 2010, 269, 46–60. [Google Scholar] [CrossRef]
- Szczuciński, W.; Jagodziński, R.; Hanebuth, T.J.J.; Stattegger, K.; Wetzel, A.; Mitręga, M.; Unverricht, D.; Phach, P.V. Modern sedimentation and sediment dispersal pattern on the continental shelf off the Mekong River delta, South China Sea. Glob. Planet. Chang. 2013, 110, 195–213. [Google Scholar] [CrossRef]
- Gugliotta, M.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Nakashima, R.; Tamura, T.; Uehara, K.; Katsuki, K.; Yamamoto, S. Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam. Cont. Shelf Res. 2017, 147, 7–26. [Google Scholar] [CrossRef]
- Unverricht, D.; Szczuciński, W.; Stattegger, K.; Jagodziński, R.; Le, X.T.; Kwong, L.L.W. Modern sedimentation and morphology of the subaqueous Mekong Delta, Southern Vietnam. Glob. Planet. Chang. 2013, 110, 223–235. [Google Scholar] [CrossRef]
- Pakhriazad, H.; Shahrin, M. Evaluating Supervised and Unsupervised Techniques for Land Cover Mapping Using Remote Sensing Data. Geogr. Malays. J. Soc. Space 2009, 5, 1–10. [Google Scholar]
- Perumal, K.; Bhaskaran, R. Supervised classification performance of multispectral images. J. Comput. 2010, 2, 124–129. [Google Scholar] [CrossRef]
- Hall, F.G.; Townshend, J.R.; Engman, E.T. Status of remote sensing algorithms for estimation of land surface state parameters. Remote Sens. Environ. 1995, 51, 138–156. [Google Scholar] [CrossRef]
- El Kafrawy, S.B.; Basiouny, M.E.; Ghanem, E.A.; Taha, A.S. Performance evaluation of shoreline extraction methods based on remote sensing data. J. Geogr. Environ. Earth Sci. Int. 2017, 11, 1–18. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Loveland, T.R.; Irons, J.R. Landsat 8: The plans, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef] [PubMed]
- Dolan, R.; Fenster, M.; Holmes, S. Temporal Analysis of Shoreline Recession and Accretion. J. Coast. Res. 1991, 7, 723–744. [Google Scholar]
- Nassar, K.; Mahmod, W.E.; Fath, H.; Masria, A.; Nadaoka, K.; Negm, A. Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Mar. Georesources Geotechnol. 2019, 37, 81–95. [Google Scholar] [CrossRef]
- Himmelstoss, E.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.1 User Guide; US Geological Survey: Reston, VA, USA, 2021. [Google Scholar]
- Natesan, U.; Parthasarathy, A.; Vishnunath, R.; Kumar, G.E.J.; Ferrer, V.A. Monitoring longterm shoreline changes along Tamil Nadu, India using geospatial techniques. Aquat. Procedia 2015, 4, 325–332. [Google Scholar] [CrossRef]
- Tucker, M.J.; Pitt, E.G. Waves in Ocean Engineering; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Lyman, T.P.; Elsmore, K.; Gaylord, B.; Byrnes, J.E.; Miller, L.P. Open Wave Height Logger: An open source pressure sensor data logger for wave measurement. Limnol. Oceanogr. Methods 2020, 18, 335–345. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Lansivaara, T.; Wei, W. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput. Geotech. 2007, 34, 137–150. [Google Scholar] [CrossRef]
- Yuan, W.; Bai, B.; Li, X.-c.; Wang, H.-b. A strength reduction method based on double reduction parameters and its application. J. Cent. South Univ. 2013, 20, 2555–2562. [Google Scholar] [CrossRef]
- Tu, Y.; Liu, X.; Zhong, Z.; Li, Y. New criteria for defining slope failure using the strength reduction method. Eng. Geol. 2016, 212, 63–71. [Google Scholar] [CrossRef]
- Chimdesa, F.F.; Chimdesa, F.F.; Jilo, N.Z.; Hulagabali, A.; Babalola, O.E.; Tiyasha, T.; Ramaswamy, K.; Kumar, A.; Bhagat, S.K. Numerical analysis of pile group, piled raft, and footing using finite element software PLAXIS 2D and GEO5. Sci. Rep. 2023, 13, 15875. [Google Scholar] [CrossRef] [PubMed]
- Bird, E. Encyclopedia of the World’s Coastal Landforms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Albers, T.; San, D.C.; Schmitt, K. Shoreline Management Guidelines: Coastal Protection in the Lower Mekong Delta; Labor Publishing House, GIZ: Hanoi, Vietnam, 2013; p. 124. [Google Scholar]
- Albers, T.; von Lieberman, N. Current and Erosion Modelling Survey; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Management of Natural Resources in the Coastal Zone of Soc Trang Province: Soc Trang City, Vietnam, 2015. [Google Scholar]
- Larson, M.; Hanson, H.; Kraus, N.C. Analytical Solutions of the One-Line Model of Shoreline Change; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1987. [Google Scholar]
- Kristensen, S.; Drønen, N.; Deigaard, R.; Fredsoe, J. Impact of groyne fields on the littoral drift: A hybrid morphological modelling study. Coast. Eng. 2016, 111, 13–22. [Google Scholar] [CrossRef]
- Hereher, M.E. Mapping coastal erosion at the Nile Delta western promontory using Landsat imagery. Environ. Earth Sci. 2011, 64, 1117–1125. [Google Scholar] [CrossRef]
- MARD. National Technical Regulation on Hydraulic Structures—The Basic Stipulation for Design; MARD: Hanoi, Vietnam, 2012; p. 28. [Google Scholar]
- Dewidar, K.; Bayoumi, S. Forecasting shoreline changes along the Egyptian Nile Delta coast using Landsat image series and Geographic Information System. Environ. Monit. Assess. 2021, 193, 429. [Google Scholar] [CrossRef]
- Olson, K.R.; Suski, C.D. Mississippi River Delta: Land subsidence and coastal erosion. Open J. Soil Sci. 2021, 11, 139–163. [Google Scholar] [CrossRef]
- Paszkowski, A.; Goodbred, S., Jr.; Borgomeo, E.; Khan, M.S.A.; Hall, J.W. Geomorphic change in the Ganges–Brahmaputra–Meghna delta. Nat. Rev. Earth Environ. 2021, 2, 763–780. [Google Scholar] [CrossRef]
- Aeman, H.; Shu, H.; Abbas, S.; Aisha, H.; Usman, M. Sinking delta: Quantifying the impacts of saltwater intrusion in the Indus Delta of Pakistan. Sci. Total Environ. 2023, 880, 163356. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, D.A.; Toby, S.C.; Siverd, C.G.; Twilley, R.; Bentley, S.J.; Hagen, S.; Xu, K. Land loss due to human-altered sediment budget in the Mississippi River Delta. Nat. Sustain. 2023, 6, 644–651. [Google Scholar] [CrossRef]
Date | Path/Row | Satellite | Sensors | Resolution (m × m/Pixel) | Ratio of Clouds (%) | Coordinates |
---|---|---|---|---|---|---|
03/03/2000 | 125/053 | Landsat 5 | TM | 30 | 30.0 | UTM |
04/04/2000 | 125/054 | Landsat 5 | TM | 30 | 30.0 | UTM |
10/03/2000 | 126/053 | Landsat 5 | TM | 30 | 14.0 | UTM |
26/03/2000 | 126/054 | Landsat 5 | TM | 30 | 52.0 | UTM |
04/05/2005 | 125/053 | Landsat 5 | TM | 30 | 20.0 | UTM |
21/06/2005 | 125/054 | Landsat 5 | TM | 30 | 18.0 | UTM |
19/01/2005 | 126/053 | Landsat 5 | TM | 30 | 1.0 | UTM |
15/08/2005 | 126/054 | Landsat 5 | TM | 30 | 6.0 | UTM |
18/05/2010 | 125/053 | Landsat 5 | TM | 30 | 11.0 | UTM |
27/02/2010 | 125/054 | Landsat 5 | TM | 30 | 29.0 | UTM |
09/05/2010 | 126/053 | Landsat 5 | TM | 30 | 22.0 | UTM |
09/05/2010 | 126/054 | Landsat 5 | TM | 30 | 23.0 | UTM |
16/05/2015 | 125/053 | Landsat 8 | OLI/TIRS | 30 | 33.1 | UTM |
16/05/2015 | 125/054 | Landsat 8 | OLI/TIRS | 30 | 13.9 | UTM |
21/04/2015 | 126/053 | Landsat 8 | OLI/TIRS | 30 | 0.2 | UTM |
20/03/2015 | 126/054 | Landsat 8 | OLI/TIRS | 30 | 2.2 | UTM |
23/02/2020 | 125/053 | Landsat 8 | OLI/TIRS | 30 | 0.3 | UTM |
23/02/2020 | 125/054 | Landsat 8 | OLI/TIRS | 30 | 1.5 | UTM |
13/01/2020 | 126/053 | Landsat 8 | OLI/TIRS | 30 | 12.9 | UTM |
17/03/2020 | 126/054 | Landsat 8 | OLI/TIRS | 30 | 1.4 | UTM |
04/02/2022 | 125/053 | Landsat 9 | OLI/TIRS | 30 | 12.9 | UTM |
11/05/2022 | 125/054 | Landsat 9 | OLI/TIRS | 30 | 52.2 | UTM |
18/01/2022 | 126/053 | Landsat 8 | OLI/TIRS | 30 | 2.8 | UTM |
18/01/2022 | 126/054 | Landsat 8 | OLI/TIRS | 30 | 0.5 | UTM |
Application Classification | Spectrum | Combination of Channels | |
---|---|---|---|
Landsat 5 | Landsat 8, 9 | ||
Natural colors | RED, GREEN, BLUE | 3 2 1 | 4 3 2 |
Vegetation (Infrared colors) | NIR, RED, GREEN | 4 3 2 | 5 4 3 |
Agricultural land | SWIR-1, NIR, BLUE | 5 4 1 | 6 5 2 |
Land/water | NIR, SWIR-1, RED | 4 5 3 | 5 6 4 |
Elevation Measurement Periods | Distance from the Breakwater to the Shoreline | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Busadco Breakwater | Pile–Rock Breakwater | Semi-Circular Breakwater | |||||||||||||
1 m | 5 m | 10 m | 15 m | 20 m | 1 m | 5 m | 10 m | 15 m | 20 m | 1 m | 5 m | 10 m | 15 m | 20 m | |
Construction Completed (2018) | −0.95 | −0.9 | −0.85 | −0.9 | −0.95 | −0.92 | −1.05 | −0.95 | −1.05 | −1.02 | −0.9 | −0.85 | −0.9 | −1 | −1.05 |
12 May 2023 | −1.2 | −0.27 | −0.24 | −0.25 | −0.26 | −1.19 | −0.17 | −0.21 | −0.22 | −0.2 | −1.2 | −0.24 | −0.25 | −0.23 | −0.27 |
Change of elevation | −0.25 | 0.63 | 0.61 | 0.65 | 0.69 | −0.27 | 0.88 | 0.74 | 0.83 | 0.82 | −0.3 | 0.61 | 0.65 | 0.77 | 0.78 |
No. | Soil Mechanical Characteristics | Symbols | Unit | Layer 1: Clay Silt | Layer 2: Mixed Clay |
---|---|---|---|---|---|
1 | Natural Moisture Content | w | % | 75.86 | 29.96 |
2 | Unsaturation Unit Weight | γunsat | kN/m3 | 15.72 | 19.71 |
3 | Saturation Unit Weight | γsat | kN/m3 | 15.96 | 19.97 |
4 | Specific Gravity | Gs | - | 2.654 | 2.707 |
5 | Internal Friction Angle | φ | ° | 3.51 | 14.19 |
6 | Cohesion Strength | C | kN/m2 | 6.67 | 26.18 |
7 | Stiffness Module | E | kN/m2 | 598 | 5815 |
8 | Hydraulic Conductivity | K | m/day | 5.22 × 10−3 | 4.27 × 10−3 |
Province | Coastal Length (km) | Erosion | Deposition | ||||
---|---|---|---|---|---|---|---|
Erosion Length (km) | Percentage | Erosion Rate (m/Year) | Deposition Length (km) | Percentage | Deposition Rate (m/Year) | ||
Tien Giang | 33.35 | 21.30 | 63.9% | 3.03–18.91 | 3.95 | 11.8% | 3.02–8.42 |
Ben Tre | 88.10 | 25.85 | 29.3% | 3.01–36.75 | 29.15 | 33.1% | 3.00–71.62 |
Tra Vinh | 73.25 | 16.35 | 22.3% | 3.02–20.92 | 34.70 | 47.4% | 3.03–38.51 |
Soc Trang | 85.60 | 14.75 | 17.2% | 3.05–15.41 | 54.70 | 63.9% | 3.08–57.61 |
Bac Lieu | 54.75 | 28.70 | 52.4% | 3.03–15.48 | 12.00 | 21.9% | 3.02–28.20 |
Ca Mau | 275.30 | 165.25 | 60.0% | 3.01–67.35 | 61.55 | 22.4% | 3.03–94.18 |
Kien Giang | 214.95 | 23.15 | 10.8% | 3.02–18.95 | 69.30 | 32.2% | 3.00–73.87 |
Total | 744.0 | 295.35 | - | - | 265.35 | - | - |
Collection Date | d50 in Front Breakwater (mm) | d50 behind Breakwater (mm) |
---|---|---|
13 October 2021 | 0.016 | 0.001 |
15 January 2022 | 0.019 | 0.002 |
15 May 2022 | 0.023 | 0.004 |
17 July 2022 | 0.034 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ty, T.V.; Duy, D.V.; Phat, L.T.; Minh, H.V.T.; Thanh, N.T.; Uyen, N.T.N.; Downes, N.K. Coastal Erosion Dynamics and Protective Measures in the Vietnamese Mekong Delta. J. Mar. Sci. Eng. 2024, 12, 1094. https://doi.org/10.3390/jmse12071094
Ty TV, Duy DV, Phat LT, Minh HVT, Thanh NT, Uyen NTN, Downes NK. Coastal Erosion Dynamics and Protective Measures in the Vietnamese Mekong Delta. Journal of Marine Science and Engineering. 2024; 12(7):1094. https://doi.org/10.3390/jmse12071094
Chicago/Turabian StyleTy, Tran Van, Dinh Van Duy, Lam Tan Phat, Huynh Vuong Thu Minh, Nguyen Truong Thanh, Nguyen Thi Ngoc Uyen, and Nigel K. Downes. 2024. "Coastal Erosion Dynamics and Protective Measures in the Vietnamese Mekong Delta" Journal of Marine Science and Engineering 12, no. 7: 1094. https://doi.org/10.3390/jmse12071094
APA StyleTy, T. V., Duy, D. V., Phat, L. T., Minh, H. V. T., Thanh, N. T., Uyen, N. T. N., & Downes, N. K. (2024). Coastal Erosion Dynamics and Protective Measures in the Vietnamese Mekong Delta. Journal of Marine Science and Engineering, 12(7), 1094. https://doi.org/10.3390/jmse12071094