Size-Dependent Microplastic Fragmentation Model
Abstract
:1. Introduction
2. Numerical Model
3. Results
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Sinusoidal-Shear Flow Model
References
- Isobe, A.; Iwasaki, S. The fate of missing ocean plastics: Are they just a marine environmental problem? Sci. Total Environ. 2022, 825, 153935. [Google Scholar] [CrossRef]
- Kaandorp, M.L.A.; Lobelle, D.; Kehl, C.; Dijkstra, H.A.; van Sebille, E. Global mass of buoyant marine plastics dominated by large long-lived debris. Nat. Geosci. 2023, 16, 689–694. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; de Lomas, J.G.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef]
- van Sebille, E.; Aliani, S.; Law, K.L.; Maximenko, N.; Alsina, J.M.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef]
- George, M.; Fabre, P. Floating plastics in oceans: A matter of size. Curr. Opin. Green Sustain. Chem. 2021, 32, 100543. [Google Scholar] [CrossRef]
- Kaandorp, M.L.A.; Dijkstra, H.A.; van Sebille, E. Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation. Environ. Res. Lett. 2021, 16, 054075. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Setälä, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef]
- Kooi, M.; Nes, E.H.v.; Scheffer, M.; Koelmans, A.A. Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics. Environ. Sci. Technol. 2017, 51, 7963–7971. [Google Scholar] [CrossRef]
- Jalón-Rojas, I.; Wang, X.H.; Fredj, E. A 3D numerical model to track marine plastic debris (TrackMPD): Sensitivity of microplastic trajectories and fates to particle dynamical properties and physical processes. Mar. Pollut. Bull. 2019, 141, 256–272. [Google Scholar] [CrossRef]
- Sutherland, B.R.; DiBenedetto, M.; Kaminski, A.; van den Bremer, T. Fluid dynamics challenges in predicting plastic pollution transport in the ocean: A perspective. Phys. Rev. Fluids 2023, 8, 070701. [Google Scholar] [CrossRef]
- Cai, C.; Zhu, L.; Hong, B. A review of methods for modeling microplastic transport in the marine environments. Mar. Pollut. Bull. 2023, 193, 115136. [Google Scholar] [CrossRef] [PubMed]
- Gilvarry, J. Fragment size in single fracture—A review of theory and experiment. Wear 1964, 7, 227–243. [Google Scholar] [CrossRef]
- Oddershede, L.; Dimon, P.; Bohr, J. Self-organized criticality in fragmenting. Phys. Rev. Lett. 1993, 71, 3107–3110. [Google Scholar] [CrossRef] [PubMed]
- Kadono, T. Fragment Mass Distribution of Platelike Objects. Phys. Rev. Lett. 1997, 78, 1444–1447. [Google Scholar] [CrossRef]
- Kadono, T.; Arakawa, M. Crack propagation in thin glass plates caused by high velocity impact. Phys. Rev. E 2002, 65, 035107. [Google Scholar] [CrossRef]
- Salman, A.; Biggs, C.; Fu, J.; Angyal, I.; Szabó, M.; Hounslow, M. An experimental investigation of particle fragmentation using single particle impact studies. Powder Technol. 2002, 128, 36–46. [Google Scholar] [CrossRef]
- Timár, G.; Blömer, J.; Kun, F.; Herrmann, H.J. New Universality Class for the Fragmentation of Plastic Materials. Phys. Rev. Lett. 2010, 104, 095502. [Google Scholar] [CrossRef]
- Brouzet, C.; Guiné, R.; Dalbe, M.J.; Favier, B.; Vandenberghe, N.; Villermaux, E.; Verhille, G. Laboratory model for plastic fragmentation in the turbulent ocean. Phys. Rev. Fluids 2021, 6, 024601. [Google Scholar] [CrossRef]
- Wu, X.; Liu, P.; Shi, H.; Wang, H.; Huang, H.; Shi, Y.; Gao, S. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water Res. 2021, 188, 116456. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- ter Halle, A.; Ladirat, L.; Gendre, X.; Goudouneche, D.; Pusineri, C.; Routaboul, C.; Tenailleau, C.; Duployer, B.; Perez, E. Understanding the Fragmentation Pattern of Marine Plastic Debris. Environ. Sci. Technol. 2016, 50, 5668–5675. [Google Scholar] [CrossRef] [PubMed]
- Lindeque, P.K.; Cole, M.; Coppock, R.L.; Lewis, C.N.; Miller, R.Z.; Watts, A.J.; Wilson-McNeal, A.; Wright, S.L.; Galloway, T.S. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ. Pollut. 2020, 265, 114721. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, L.; Egger, M.; Slat, B. A global mass budget for positively buoyant macroplastic debris in the ocean. Sci. Rep. 2019, 9, 12922. [Google Scholar] [CrossRef] [PubMed]
- Turcotte, D.L. Fractals and fragmentation. J. Geophys. Res. Solid Earth 1986, 91, 1921–1926. [Google Scholar] [CrossRef]
- Åström, J.A. Statistical models of brittle fragmentation. Adv. Phys. 2006, 55, 247–278. [Google Scholar] [CrossRef]
- Bird, N.R.A.; Watts, C.W.; Tarquis, A.M.; Whitmore, A.P. Modeling Dynamic Fragmentation of Soil. Vadose Zone J. 2009, 8, 197–201. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef]
- George, M.; Nallet, F.; Fabre, P. A threshold model of plastic waste fragmentation: New insights into the distribution of microplastics in the ocean and its evolution over time. Mar. Pollut. Bull. 2024, 199, 116012. [Google Scholar] [CrossRef]
- Aoki, K.; Furue, R. A model for the size distribution of marine microplastics: A statistical mechanics approach. PLoS ONE 2021, 16, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Tsiaras, K.; Hatzonikolakis, Y.; Kalaroni, S.; Pollani, A.; Triantafyllou, G. Modeling the Pathways and Accumulation Patterns of Micro- and Macro-Plastics in the Mediterranean. Front. Mar. Sci. 2021, 8, 743117. [Google Scholar] [CrossRef]
- Zahnow, J.C.; Vilela, R.D.; Feudel, U.; Tél, T. Aggregation and fragmentation dynamics of inertial particles in chaotic flows. Phys. Rev. E 2008, 77, 055301. [Google Scholar] [CrossRef] [PubMed]
- Zahnow, J.C.; Maerz, J.; Feudel, U. Particle-based modeling of aggregation and fragmentation processes: Fractal-like aggregates. Phys. D Nonlinear Phenom. 2011, 240, 882–893. [Google Scholar] [CrossRef]
- Neufeld, Z.; Hernández-García, E. Chemical and Biological Processes in Fluid Flows: A Dynamical Systems Approach; Imperial College Press: London, UK, 2010. [Google Scholar]
- Spicer, P.T.; Pratsinis, S.E. Coagulation and fragmentation: Universal steady-state particle-size distribution. AIChE J. 1996, 42, 1612–1620. [Google Scholar] [CrossRef]
- Virkar, Y.; Clauset, A. Power-law distributions in binned empirical data. Ann. Appl. Stat. 2014, 8, 89–119. [Google Scholar] [CrossRef]
- Cózar, A.; Sanz-Martín, M.; Martí, E.; González-Gordillo, J.I.; Ubeda, B.; Gálvez, J.A.; Irigoien, X.; Duarte, C.M. Plastic Accumulation in the Mediterranean Sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef]
- Ruiz-Orejón, L.F.; Sardá, R.; Ramis-Pujol, J. Now, you see me: High concentrations of floating plastic debris in the coastal waters of the Balearic Islands (Spain). Mar. Pollut. Bull. 2018, 133, 636–646. [Google Scholar] [CrossRef]
Domain | |
---|---|
Mediterranean Sea | 1.45 ± 0.03 |
Around Globe | 1.84 ± 0.08 |
Balearic Islands | 2.12 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Muñuzuri, V. Size-Dependent Microplastic Fragmentation Model. J. Mar. Sci. Eng. 2024, 12, 1213. https://doi.org/10.3390/jmse12071213
Pérez-Muñuzuri V. Size-Dependent Microplastic Fragmentation Model. Journal of Marine Science and Engineering. 2024; 12(7):1213. https://doi.org/10.3390/jmse12071213
Chicago/Turabian StylePérez-Muñuzuri, Vicente. 2024. "Size-Dependent Microplastic Fragmentation Model" Journal of Marine Science and Engineering 12, no. 7: 1213. https://doi.org/10.3390/jmse12071213
APA StylePérez-Muñuzuri, V. (2024). Size-Dependent Microplastic Fragmentation Model. Journal of Marine Science and Engineering, 12(7), 1213. https://doi.org/10.3390/jmse12071213