Optimization and Energy Maximizing Control Systems for Wave Energy Converters II
1. Introduction
2. An Overview of Published Articles
Conflicts of Interest
List of Contributions
- Roh, C. Maximum Power Control Algorithm for Power Take-Off System Based on Hydraulic System for Floating Wave Energy Converters. J. Mar. Sci. Eng. 2022, 10, 603. https://doi.org/10.3390/jmse10050603.
- Jusoh, M.A.; Yusop, Z.M.; Albani, A.; Daud, M.Z.; Ibrahim, M.Z. An Improved Hydraulic Power Take-Off Unit Based on Dual Fluid Energy Storage for Reducing the Power Fluctuation Problem in the Wave Energy Conversion System. J. Mar. Sci. Eng. 2022, 10, 1160. https://doi.org/10.3390/jmse10081160.
- Tan, J.; Wang, X.; Polinder, H.; Laguna, A.J.; Miedema, S.A. Downsizing the Linear PM Generator in Wave Energy Conversion for Improved Economic Feasibility. J. Mar. Sci. Eng. 2022, 10, 1316. https://doi.org/10.3390/jmse10091316.
- Bonfanti, M.; Giorgi, G. Improving Computational Efficiency in WEC Design: Spectral-Domain Modelling in Techno-Economic Optimization. J. Mar. Sci. Eng. 2022, 10, 1468. https://doi.org/10.3390/jmse10101468.
- Wan, Z.; Li, Z.; Zhang, D.; Zheng, H. Design and Research of Slope-Pendulum Wave Energy Conversion Device. J. Mar. Sci. Eng. 2022, 10, 1572. https://doi.org/10.3390/jmse10111572.
- Castellini, L.; Gallorini, F.; Alessandri, G.; Alves, E.F.; Montoya, D.; Mudigonda, B.; Tedeschi, E. Comparison of Offline, Real-Time Models and Hardware-in-the-Loop Test Results of a Power Take-Off for Wave Energy Applications. J. Mar. Sci. Eng. 2022, 10, 1744. https://doi.org/10.3390/jmse10111744.
- Li, D.; Patton, R. Model Predictive Energy-Maximising Tracking Control for a Wavestar Prototype Wave Energy Converter. J. Mar. Sci. Eng. 2023, 11, 1289. https://doi.org/10.3390/jmse11071289.
- Paduano, B.; Faedo, N.; Mattiazzo, G. On the Effect of Wave Direction on Control and Performance of a Moored Pitching Wave Energy Conversion System. J. Mar. Sci. Eng. 2023, 11, 2001. https://doi.org/10.3390/jmse11102001.
- Haider, A.S.; Bubbar, K.; McCall, A. Comparison of Advanced Control Strategies Applied to a Multiple-Degrees-of-Freedom Wave Energy Converter: Nonlinear Model Predictive Controller versus Reinforcement Learning. J. Mar. Sci. Eng. 2023, 11, 2120. https://doi.org/10.3390/jmse11112120.
- Giorcelli, F.; Sirigu, S.A.; Giorgi, G.; Faedo, N.; Bonfanti, M.; Ramello, J.; Giorcelli, E.; Mattiazzo, G. Measuring the Robustness of Optimal Design Solutions for Wave Energy Converters via a Stochastic Approach. J. Mar. Sci. Eng. 2024, 12, 482. https://doi.org/10.3390/jmse12030482.
References
- O’hagan, A.; Huertas, C.; O’callaghan, J.; Greaves, D. Wave energy in Europe: Views on experiences and progress to date. Int. J. Mar. Energy. 2016, 14, 180–197. [Google Scholar] [CrossRef]
- Gonzalez, A.T.; Dunning, P.; Howard, I.; McKee, K.; Wiercigroch, M. Is wave energy untapped potential? Int. J. Mech. Sci. 2021, 205, 106544. [Google Scholar] [CrossRef]
- Paduano, B.; Carapellese, F.; Pasta, E.; Bonfanti, M.; Sirigu, S.A.; Basile, D.; Pizzirusso, D.; Faedo, N.; Mattiazzo, G. Experimental and Numerical Investigation on the Performance of a Moored Pitching Wave Energy Conversion System. IEEE J. Ocean. Eng. 2024, 49, 802–820. [Google Scholar] [CrossRef]
- Ruiz-Minguela, P.; Noble, D.R.; Nava, V.; Pennock, S.; Blanco, J.M.; Jeffrey, H. Estimating future costs of emerging wave energy technologies. Sustainability 2022, 15, 215. [Google Scholar] [CrossRef]
- Giglio, E.; Petracca, E.; Paduano, B.; Moscoloni, C.; Giorgi, G.; Sirigu, S.A. Estimating the cost of wave energy converters at an early design stage: A bottom-up approach. Sustainability 2023, 15, 6756. [Google Scholar] [CrossRef]
- Bonfanti, M.; Faedo, N.; Mattiazzo, G. Towards efficient control synthesis for nonlinear wave energy conversion systems: Impedance-matching meets the spectral-domain. Nonlinear Dyn. 2024, 112, 11085–11109. [Google Scholar] [CrossRef]
- Faedo, N.; Olaya, S.; Ringwood, J.V. Optimal control, MPC and MPC-like algorithms for wave energy systems: An overview. IFAC J. Syst. Control 2017, 1, 37–56. [Google Scholar] [CrossRef]
- Coe, R.G.; Bacelli, G.; Forbush, D. A practical approach to wave energy modelling and control. Renew. Sustain. Energy Rev. 2021, 142, 110791. [Google Scholar] [CrossRef]
- Carapellese, F.; Pasta, E.; Paduano, B.; Faedo, N.; Mattiazzo, G. Intuitive LTI energy-maximising control for multi-degree of freedom wave energy converters: The PeWEC case. Ocean Eng. 2022, 256, 111444. [Google Scholar] [CrossRef]
- Bonfanti, M.; Carapellese, F.; Sirigu, S.A.; Bracco, G.; Mattiazzo, G. Excitation forces estimation for non-linear wave energy converters: A neural network approach. IFAC-Pap. 2020, 53, 12334–12339. [Google Scholar] [CrossRef]
- Bonfanti, M.; Sirigu, S.A. Spectral-domain modelling of a non-linear wave energy converter: Analytical derivation and computational experiments. Mech. Syst. Signal Process. 2023, 198, 110398. [Google Scholar] [CrossRef]
- Faedo, N.; Giorgi, G.; Ringwood, J.V.; Mattiazzo, G. Optimal control of wave energy systems considering nonlinear Froude–Krylov effects: Control-oriented modelling and moment-based control. Nonlinear Dyn. 2022, 109, 1777–1804. [Google Scholar] [CrossRef]
- Davidson, J.; Costello, R. Efficient nonlinear hydrodynamic models for wave energy con-verter design—A scoping study. J. Mar. Sci. Eng. 2020, 8, 35. [Google Scholar] [CrossRef]
- Daqaq, M.F.; Giorgi, G.; Khasawneh, M.A. Deliberate introduction of a nonlinear restoring element to point wave energy absorbers: A review and assessment. Nonlinear Dyn. 2024, 112, 13695–13731. [Google Scholar] [CrossRef]
- Farajvand, M.; Grazioso, V.; García-Violini, D.; Ringwood, J.V. Uncertainty estimation in wave energy systems with applications in robust energy maximising control. Renew. Energy 2023, 203, 194–204. [Google Scholar] [CrossRef]
- Ambühl, S.; Kofoed, J.P.; Sørensen, J.D. Stochastic modeling of long-term and extreme value estimation of wind and sea conditions for probabilistic reliability assessments of wave energy devices. Ocean Eng. 2014, 89, 243–255. [Google Scholar] [CrossRef]
- Ambühl, S.; Kramer, M.; Sørensen, J.D. Reliability-based structural optimization of wave energy converters. Energies 2014, 7, 8178–8200. [Google Scholar] [CrossRef]
- Clark, C.E.; DuPont, B. Reliability-based design optimization in offshore renewable energy systems. Renew. Sustain. Energy Rev. 2018, 97, 390–400. [Google Scholar] [CrossRef]
- Garcia-Teruel, A.; Forehand, D.I. A review of geometry optimisation of wave energy converters. Renew. Sustain. Energy Rev. 2021, 139, 110593. [Google Scholar] [CrossRef]
- Teixeira-Duarte, F.; Clemente, D.; Giannini, G.; Rosa-Santos, P.; Taveira-Pinto, F. Review on layout optimization strategies of offshore parks for wave energy converters. Renew. Sustain. Energy Rev. 2022, 163, 112513. [Google Scholar] [CrossRef]
- Shadmani, A.; Nikoo, M.R.; Gandomi, A.H.; Chen, M.; Nazari, R. Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms. Renew. Sustain. Energy Rev. 2024, 197, 114398. [Google Scholar] [CrossRef]
- Grasberger, J.; Yang, L.; Bacelli, G.; Zuo, L. Control co-design and optimization of oscillating-surge wave energy converter. Renew. Energy 2024, 225, 120234. [Google Scholar] [CrossRef]
- Abdulkadir, H.; Abdelkhalik, O. Control co-design optimization of nonlinear wave energy converters. Ocean Eng. 2024, 304, 117827. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giorgi, G.; Bonfanti, M. Optimization and Energy Maximizing Control Systems for Wave Energy Converters II. J. Mar. Sci. Eng. 2024, 12, 1297. https://doi.org/10.3390/jmse12081297
Giorgi G, Bonfanti M. Optimization and Energy Maximizing Control Systems for Wave Energy Converters II. Journal of Marine Science and Engineering. 2024; 12(8):1297. https://doi.org/10.3390/jmse12081297
Chicago/Turabian StyleGiorgi, Giuseppe, and Mauro Bonfanti. 2024. "Optimization and Energy Maximizing Control Systems for Wave Energy Converters II" Journal of Marine Science and Engineering 12, no. 8: 1297. https://doi.org/10.3390/jmse12081297
APA StyleGiorgi, G., & Bonfanti, M. (2024). Optimization and Energy Maximizing Control Systems for Wave Energy Converters II. Journal of Marine Science and Engineering, 12(8), 1297. https://doi.org/10.3390/jmse12081297