Global Path Planning of Unmanned Surface Vehicle in Complex Sea Areas Based on Improved Streamline Method
Abstract
:1. Introduction
- To enhance the navigation safety of USVs in complex maritime environments such as densely islanded areas and shallow waters minimum safe water depths have been established in this study.
- This study employs CFD technology to determine globally feasible paths for USVs, avoiding local optima. For complex maritime regions and areas with unknown hazards, we identified and marked potential dangers, using the improved A* algorithm for local path planning. This approach ensures a more comprehensive and practical global planning strategy.
2. Method
2.1. Process Framework
2.2. Global Streamline Method
2.3. Locally Improved A* Algorithm
- Add safety distance
- Remove redundant nodes
2.4. Warning of Dangerous Area of USV Based on GeoNetworking Mode
3. Safety Analysis and Environmental Modeling
3.1. Research Area
3.2. Data Source
3.3. Setting Safe Water Depths
3.4. Environmental Modeling
4. Simulation Result
4.1. Streamline Global Route Planning
4.2. Improved A* Algorithm Local Path Planning
4.3. Validation of the USV
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, N.; Karimi, H.R. Successive Waypoints Tracking of an Underactuated Surface Vehicle. IEEE Trans. Ind. Inform. 2020, 16, 898–908. [Google Scholar] [CrossRef]
- Li, J.Q.; Zhang, G.Q.; Jiang, C.Y.; Zhang, W.D. A survey of maritime unmanned search system: Theory, applications and future directions. Ocean Eng. 2023, 285, 115359. [Google Scholar] [CrossRef]
- Hong, S.M.; Nam, K.S.; Ryu, J.D.; Lee, D.G.; Ha, K.N. Development and Field Test of Unmanned Marine Vehicle (USV/UUV) With cable. IEEE Access 2020, 8, 193347–193355. [Google Scholar] [CrossRef]
- Charalambopoulos, N.; Xidias, E.; Nearchou, A. Efficient ship weather routing using probabilistic roadmaps. Ocean Eng. 2023, 273, 114031. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, Y.J.; Li, Z.; Yan, X.P.; Bi, H.X.; Krolczyk, G. A new coverage path planning algorithm for unmanned surface mapping vehicle based on A-star based searching. Appl. Ocean Res. 2022, 123, 103163. [Google Scholar] [CrossRef]
- Ammar, A. ERA*: Enhanced Relaxed A* algorithm for solving the shortest path problem in regular grid maps. Inf. Sci. 2024, 657, 120000. [Google Scholar] [CrossRef]
- Gu, Q.Y.; Zhen, R.; Liu, J.L.; Li, C. An improved RRT algorithm based on prior AIS information and DP compression for ship path planning. Ocean Eng. 2023, 279, 114595. [Google Scholar] [CrossRef]
- Sang, H.Q.; You, Y.S.; Sun, X.J.; Zhou, Y.; Liu, F. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations. Ocean Eng. 2021, 223, 108709. [Google Scholar] [CrossRef]
- Machmudah, A.; Shanmugavel, M.; Parman, S.; Abd Manan, T.S.; Dutykh, D.; Beddu, S.; Rajabi, A. Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism. Drones 2022, 6, 69. [Google Scholar] [CrossRef]
- Shao, S.K.; Peng, Y.; He, C.L.; Du, Y. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Trans. 2020, 97, 415–430. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Zheng, Z.; Liu, Y. Survey on computational-intelligence-based UAV path planning. Knowl.-Based Syst. 2018, 158, 54–64. [Google Scholar] [CrossRef]
- Chen, J.C.; Ling, F.Y.; Zhang, Y.; You, T.; Liu, Y.F.; Du, X.Y. Coverage path planning of heterogeneous unmanned aerial vehicles based on ant colony system. Swarm Evol. Comput. 2022, 69, 101005. [Google Scholar] [CrossRef]
- Liu, X.F.; Fang, Y.C.; Zhan, Z.H.; Jiang, Y.L.; Zhang, J. A Cooperative Evolutionary Computation Algorithm for Dynamic Multiobjective Multi-AUV Path Planning. IEEE Trans. Ind. Inform. 2024, 20, 669–680. [Google Scholar] [CrossRef]
- Ntakolia, C.; Lyridis, D. A comparative study on Ant Colony Optimization algorithm approaches for solving multi-objective path planning problems in case of unmanned surface vehicles. Ocean Eng. 2022, 255, 111418. [Google Scholar] [CrossRef]
- Shu, Y.Q.; Xiong, C.H.; Zhu, Y.L.; Liu, K.; Liu, R.W.; Xu, F.; Gan, L.X.; Zhang, L. Reference path for ships in ports and waterways based on optimal control. Ocean Coast. Manag. 2024, 253, 107168. [Google Scholar] [CrossRef]
- Pedersen, M.D.; Fossen, T.I. Marine Vessel Path Planning & Guidance Using Potential Flow. IEEE Trans. Control Syst. Technol. 2012, 45, 188–193. [Google Scholar]
- Kularatne, D.; Bhattacharya, S.; Hsieh, M.A. Going with the flow: A graph based approach to optimal path planning in general flows. Auton. Robot. 2018, 42, 1369–1387. [Google Scholar] [CrossRef]
- To, K.; Lee, K.; Yoo, C.; Anstee, S.; Fitch, R. Streamlines for Motion Planning in Underwater Currents. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Suner, M.; Bas, M. A new approach to narrow waterways traffic routing with potential flow theory and CFD. Ocean Eng. 2022, 261, 111862. [Google Scholar] [CrossRef]
- Zhang, W.L.; Shan, L.; Chang, L.; Dai, Y.W. SVF-RRT*: A Stream-Based VF-RRT* for USVs Path Planning Considering Ocean Currents. IEEE Robot. Autom. Lett. 2023, 8, 1137–1146. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Ren, Z.R.; Marley, M.; Skjetne, R. A Guidance and Maneuvering Control System Design With Anti-Collision Using Stream Functions With Vortex Flows for Autonomous Marine Vessels. IEEE Trans. Control. Syst. Technol. 2022, 30, 2630–2645. [Google Scholar] [CrossRef]
- Abaei, M.M.; Arzaghi, E.; Abbassi, R.; Garaniya, V.; Javanmardi, M.; Chai, S.H. Dynamic reliability assessment of ship grounding using Bayesian Inference. Ocean Eng. 2018, 159, 47–55. [Google Scholar] [CrossRef]
- Yu, K.; Liang, X.F.; Li, M.Z.; Chen, Z.; Yao, Y.L.; Li, X.; Zhao, Z.X.; Teng, Y. USV path planning method with velocity variation and global optimisation based on AIS service platform. IEEE Trans. Ind. Inform. 2021, 236, 109560. [Google Scholar] [CrossRef]
- Lee, S. Hydrodynamic interaction forces on different ship types under various operating conditions in restricted waters. Ocean Eng. 2023, 267, 113325. [Google Scholar] [CrossRef]
- Pan, W.; Xie, X.L.; He, P.; Bao, T.T.; Bao, T. An automatic route design algorithm for intelligent ships based on a novel environment modeling method. Ocean Eng. 2021, 237, 109603. [Google Scholar] [CrossRef]
- Yang, X.F.; Shi, Y.L.; Liu, W.; Ye, H.; Zhong, W.B.; Xiang, Z.G. Global path planning algorithm based on double DQN for multi-tasks amphibious unmanned surface vehicle. Ocean Eng. 2022, 266, 112809. [Google Scholar]
- Wang, J.B.; Zeng, C.; Ding, C.F.; Zhang, H.; Lin, M.; Wang, J.Z. Unmanned Surface Vessel Assisted Maritime Wireless Communication Toward 6G: Opportunities and Challenges. IEEE Wirel. Commun. 2022, 29, 72–79. [Google Scholar] [CrossRef]
- Wei, T.; Feng, W.; Chen, Y.F.; Wang, C.X.; Ge, N.; Lu, J.H. Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges. IEEE Internet Things J. 2021, 8, 8910–8934. [Google Scholar] [CrossRef]
- Jahanbakht, M.; Xiang, W.; Hanzo, L. Internet of Underwater Things and Big Marine Data Analytics-A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2021, 23, 904–956. [Google Scholar] [CrossRef]
- Teng, F.; Ban, Z.X.; Li, T.S.; Sun, Q.Y.; Li, Y.S. A Privacy-Preserving Distributed Economic Dispatch Method for Integrated Port Microgrid and Computing Power Network. IEEE Trans. Ind. Inform. 2024; early access. [Google Scholar]
- Ma, Y.; Nie, Z.Q.; Hu, S.L.; Li, Z.X.; Malekian, R.; Sotelo, M. Fault Detection Filter and Controller Co-Design for Unmanned Surface Vehicles Under DoS Attacks. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1422–1434. [Google Scholar] [CrossRef]
- Jorge, V.A.M.; Granada, R.; Maidana, R.G.; Jurak, D.A.; Heck, G.; Negreiros, A.P.F.; Dos Santos, D.H.; Gonçalves, L.M.G.; Amory, A.M. A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions. Sensors 2019, 19, 702. [Google Scholar] [CrossRef]
- Sandonis, V.; Soto, I.; Calderón, M.; Urueña, M. Vehicle to Internet communications using the ETSI ITS GeoNetworking protocol. Trans. Emerg. Telecommun. Technol. 2014, 27, 373–391. [Google Scholar] [CrossRef]
- Campolo, C.; Molinaro, A.; Scopigno, R. From today’s VANETs to tomorrow’s planning and the bets for the day after. Veh. Commun. 2015, 2, 158–171. [Google Scholar] [CrossRef]
- Teng, F.; Zhang, Y.X.; Yang, T.K.; Li, T.S.; Xiao, Y.; Li, Y.S. Distributed Optimal Energy Management for We-Energy Considering Operation Security. IEEE Trans. Netw. Sci. Eng. 2024, 11, 225–235. [Google Scholar] [CrossRef]
- Jiménez, F.; Naranjo, J.E.; Anaya, J.J.; Arcía, F.; Ponz, A.; Armingol, J.M. Advanced Driver Assistance System for Road Environments to Improve Safety and Efficiency. Transp. Res. Procedia 2016, 14, 2245–2254. [Google Scholar] [CrossRef]
- Raven, H.C. Shallow-water effects in ship model testing and at full scale. Ocean Eng. 2019, 189, 106343. [Google Scholar] [CrossRef]
Leagth Overall | Beam | Speed | Draft |
---|---|---|---|
69.83 m | 10.9 m | 17.5 knots | 3.5 m |
Comparison of Different Algorithms | Search Time | Path Length |
---|---|---|
The traditional A* algorithm | 4.83 s | 246.22 |
The introduction of the safe distance A* algorithm | 4.71 s | 246.63 |
The RRT algorithm | 7.86 s | 295.59 |
The improved A* algorithm | 4.66 s | 242.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Shan, Q.; Cao, Y.; Xu, Q. Global Path Planning of Unmanned Surface Vehicle in Complex Sea Areas Based on Improved Streamline Method. J. Mar. Sci. Eng. 2024, 12, 1324. https://doi.org/10.3390/jmse12081324
Liu H, Shan Q, Cao Y, Xu Q. Global Path Planning of Unmanned Surface Vehicle in Complex Sea Areas Based on Improved Streamline Method. Journal of Marine Science and Engineering. 2024; 12(8):1324. https://doi.org/10.3390/jmse12081324
Chicago/Turabian StyleLiu, Haoran, Qihe Shan, Yuchi Cao, and Qi Xu. 2024. "Global Path Planning of Unmanned Surface Vehicle in Complex Sea Areas Based on Improved Streamline Method" Journal of Marine Science and Engineering 12, no. 8: 1324. https://doi.org/10.3390/jmse12081324
APA StyleLiu, H., Shan, Q., Cao, Y., & Xu, Q. (2024). Global Path Planning of Unmanned Surface Vehicle in Complex Sea Areas Based on Improved Streamline Method. Journal of Marine Science and Engineering, 12(8), 1324. https://doi.org/10.3390/jmse12081324