Tracing the 2018 Sulawesi Earthquake and Tsunami’s Impact on Palu, Indonesia: A Remote Sensing Analysis
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Remote Sensing Workflow
- Acquisition of Sentinel-2 imagery for pre- and post-tsunami periods;
- Data preprocessing, which involves atmospheric correction, radiometric calibration, and resampling to convert raw Digital Number (DN) values into reflectance values;
- Index calculations for NDVI, NDSI, and NDWI from reflectance data to distinguish various land and water features;
- Visual analysis with Maxar Satellite Imagery to identify affected and unaffected regions by the tsunami;
- Comparative analysis of indices before and after the tsunami to detect changes in vegetation, soil, and water;
- Threshold determination using cumulative frequency distribution to classify impacted areas based on index variations;
- Output generation, producing a map that clearly marks tsunami-affected areas, serving as a valuable tool for disaster response and assessment.
2.4. Index Formulas
3. Results
3.1. Color Composites
3.2. Computation of Indices
3.2.1. Normalized Difference Vegetation Index
3.2.2. Normalized Difference Water Index
3.2.3. Normalized Difference Soil Index
3.3. Threshold Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koshimura, S.; Moya, L.; Mas, E.; Bai, Y. Tsunami Damage Detection with Remote Sensing: A Review. Geosciences 2020, 10, 177. [Google Scholar] [CrossRef]
- Shuto, N.; Fujima, K. A Short History of Tsunami Research and Countermeasures in Japan. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009, 85, 267–275. [Google Scholar] [CrossRef]
- Kanamori, H. Mechanism of Tsunami Earthquakes. Phys. Earth Planet. Inter. 1972, 6, 346–359. [Google Scholar] [CrossRef]
- Abe, K. Tsunami and Mechanism of Great Earthquakes. Phys. Earth Planet. Inter. 1973, 7, 193–203. [Google Scholar] [CrossRef]
- Röbke, B.R.; Vött, A. The Tsunami Phenomenon. Prog. Oceanogr. 2017, 159, 296–312. [Google Scholar] [CrossRef]
- Harbitz, C.B.; Løvholt, F.; Pedersen, G.; Masson, D.G. Mechanisms of Tsunami Generation by Submarine Landslides: A Short Review. Nor. J. Geol. 2006, 86, 255–264. [Google Scholar]
- Papadopoulos, G.A.; Gràcia, E.; Urgeles, R.; Sallares, V.; De Martini, P.M.; Pantosti, D.; González, M.; Yalciner, A.C.; Mascle, J.; Sakellariou, D.; et al. Historical and Pre-Historical Tsunamis in the Mediterranean and Its Connected Seas: Geological Signatures, Generation Mechanisms and Coastal Impacts. Mar. Geol. 2014, 354, 81–109. [Google Scholar] [CrossRef]
- Jaumé, S.C.; Sykes, L.R. Evolving Towards a Critical Point: A Review of Accelerating Seismic Moment/Energy Release Prior to Large and Great Earthquakes. In Seismicity Patterns, Their Statistical Significance and Physical Meaning; Wyss, M., Shimazaki, K., Ito, A., Eds.; Birkhäuser: Basel, Switzerland, 1999; pp. 279–305. [Google Scholar]
- van Rijsingen, E.; Lallemand, S.; Peyret, M.; Arcay, D.; Heuret, A.; Funiciello, F.; Corbi, F. How Subduction Interface Roughness Influences the Occurrence of Large Interplate Earthquakes. Geochem. Geophys. Geosyst. 2018, 19, 2342–2370. [Google Scholar] [CrossRef]
- Han, S.-C.; Sauber, J.; Luthcke, S. Regional Gravity Decrease After the 2010 Maule (Chile) Earthquake Indicates Large-Scale Mass Redistribution. Geophys. Res. Lett. 2010, 37, L23307. [Google Scholar] [CrossRef]
- Baba, T.; Cummins, P.R. Contiguous Rupture Areas of Two Nankai Trough Earthquakes Revealed by High-Resolution Tsunami Waveform Inversion. Geophys. Res. Lett. 2005, 32, L08305. [Google Scholar] [CrossRef]
- Thiel, C.C., Jr.; Zsutty, T.C. Earthquake Characteristics and Damage Statistics. Earthq. Spectra 1987, 3, 747–792. [Google Scholar] [CrossRef]
- Wesnousky, S.G. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bull. Seismol. Soc. Am. 2008, 98, 1609–1632. [Google Scholar] [CrossRef]
- Oth, A. On the Characteristics of Earthquake Stress Release Variations in Japan. Earth Planet. Sci. Lett. 2013, 377–378, 132–141. [Google Scholar] [CrossRef]
- Van Dorn, W.G. Some Tsunami Characteristics Deducible from Tide Records. J. Phys. Oceanogr. 1984, 14, 353–363. [Google Scholar] [CrossRef]
- Løvholt, F.; Pedersen, G.; Harbitz, C.B.; Glimsdal, S.; Kim, J. On the Characteristics of Landslide Tsunamis. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140376. [Google Scholar] [CrossRef]
- Reid, J.A.; Mooney, W.D. Tsunami Occurrence 1900–2020: A Global Review, with Examples from Indonesia. Pure Appl. Geophys. 2023, 180, 1549–1571. [Google Scholar] [CrossRef]
- Muhari, A.; Diposaptono, S.; Imamura, F. Toward an Integrated Tsunami Disaster Mitigation: Lessons Learned from Previous Tsunami Events in Indonesia. J. Nat. Disaster Sci. 2007, 29, 13–19. [Google Scholar] [CrossRef]
- Esteban, M.; Tsimopoulou, V.; Mikami, T.; Yun, N.Y.; Suppasri, A.; Shibayama, T. Recent Tsunamis Events and Preparedness: Development of Tsunami Awareness in Indonesia, Chile and Japan. Int. J. Disaster Risk Reduct. 2013, 5, 84–97. [Google Scholar] [CrossRef]
- Mutaqin, B.W.; Lavigne, F.; Hadmoko, D.S.; Ngalawani, M.N. Volcanic eruption-induced tsunami in Indonesia: A review. IOP Conf. Ser. Earth Environ. Sci. 2019, 256, 012023. [Google Scholar] [CrossRef]
- Supriatna, J. Konservasi Biodiversitas: Teori dan Praktik di Indonesia; Yayasan Pustaka Obor Indonesia: Jakarta, Indonesia, 2018. [Google Scholar]
- National Geophysical Data Center/World Data Service. NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information. Available online: https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/MGG/Hazards/iso/xml/G02151.xml&view=getDataView (accessed on 16 January 2024). [CrossRef]
- Intergovernmental Oceanographic Commission (IOC) of UNESCO. Tsunami Programme—Pacific. Available online: https://tsunami.ioc.unesco.org/en/pacific (accessed on 16 January 2024).
- Valkaniotis, S.; Ganas, A.; Tsironi, V.; Barberopoulou, A. A Preliminary Report on the M7.5 Palu Earthquake Co-Seismic Ruptures and Landslides Using Image Correlation Techniques on Optical Satellite Data; Zenodo: Genève, Switzerland, 2018. [Google Scholar] [CrossRef]
- Paulik, R.; Gusman, A.; Williams, J.H.; Pratama, G.M.; Lin, S.-L.; Prawirabhakti, A.; Sulendra, K.; Zachari, M.Y.; Fortuna, Z.E.D.; Layuk, N.B.P.; et al. Tsunami hazard and built environment damage observations from Palu City after the September 28, 2018 Sulawesi earthquake and tsunami. Pure Appl. Geophys. 2019, 176, 3305–3321. [Google Scholar] [CrossRef]
- Rahardjo, P.P. Study on the phenomena of liquefaction-induced massive landslides in 28 September 2018 Palu-Donggala earthquake. In Understanding and Reducing Landslide Disaster Risk: Volume 5 Catastrophic Landslides and Frontiers of Landslide Science, 5th ed.; Elsevier: London, UK, 2021; pp. 25–48. [Google Scholar]
- Omira, R.; Dogan, G.G.; Hidayat, R.; Husrin, S.; Prasetya, G.; Annunziato, A.; Proietti, C.; Probst, P.; Paparo, M.A.; Wronna, M.; et al. The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: A post-event field survey. Pure Appl. Geophys. 2019, 176, 1379–1395. [Google Scholar] [CrossRef]
- Ramírez-Herrera, M.T.; Navarrete-Pacheco, J.A. Satellite data for a rapid assessment of tsunami inundation areas after the 2011 Tohoku tsunami. Pure Appl. Geophys. 2013, 170, 1067–1080. [Google Scholar] [CrossRef]
- Tang, L.; Titov, V.; Chamberlin, C. Assessment of potential tsunami impact for Southern California, USA using satellite altimetry data. Nat. Hazards 2016, 82, 359–370. [Google Scholar]
- Chiroiu, L.; André, C.; Rekacewicz, P. High-resolution satellite imagery in coastal disaster management: Assessing the 2004 Tsunami impact. Disaster Prevention and Management 2018, 27, 578–590. [Google Scholar]
- Liu, P.L.; Lynett, P.; Fernando, H. Observation of the 2011 Tohoku tsunami using satellite SAR data. Remote Sens. Environ. 2015, 159, 202–215. [Google Scholar]
- Sepúlveda, I.; Tozer, B.; Haase, J.S.; Liu, P.L.F.; Grigoriu, M. Modeling uncertainties of bathymetry predicted with satellite altimetry data and application to tsunami hazard assessments. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019735. [Google Scholar] [CrossRef]
- Yamazaki, F.; Matsuoka, M.; Warnitchai, P.; Polngam, S.; Ghosh, S. Tsunami reconnaissance survey in Thailand using satellite images and GPS. Asian J. Geoinform. 2005, 5, 53–61. [Google Scholar]
- Paris, R.; Lavigne, F.; Wassmer, P.; Sartohadi, J. Coastal sedimentation associated with the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Mar. Geol. 2007, 238, 93–106. [Google Scholar] [CrossRef]
- Lavigne, F.; Paris, R.; Grancher, D.; Wassmer, P.; Brunstein, D.; Vautier, F.; Flohic, F.; De Coster, B.; Gunawan, T.; Gomez, C.; et al. Reconstruction of tsunami inland propagation on December 26, 2004, in Banda Aceh, Indonesia, through field investigations. Pure Appl. Geophys. 2009, 166, 259–281. [Google Scholar] [CrossRef]
- Borrero, J.C. Field survey of northern Sumatra and Banda Aceh, Indonesia after the tsunami and earthquake of 26 December 2004. Seismol. Res. Lett. 2005, 76, 312–320. [Google Scholar] [CrossRef]
- Koshimura, S.; Gokon, H.; Fukuoka, T.; Hayashi, S. Remote sensing and GIS-based approach to identify the impact of the 2011 Tohoku Earthquake tsunami disaster. J. Jpn. Assoc. Earthq. Eng. 2012, 12, 50–62. [Google Scholar]
- Sambah, A.B.; Miura, F. Spatial data analysis and remote sensing for observing tsunami-inundated areas. Int. J. Remote Sens. 2016, 37, 2047–2065. [Google Scholar] [CrossRef]
- Gokon, H.; Koshimura, S.; Matsuoka, M. Remote sensing-based assessment of tsunami vulnerability and risk in coastal areas. Int. J. Disaster Risk Reduct. 2017, 22, 487–501. [Google Scholar]
- Taubenböck, H.; Post, J.; Kiefl, R.; Roth, A.; Ismail, F.; Strunz, G.; Dech, S. Risk and vulnerability assessment to tsunami hazard using very high resolution satellite data—The case study of Padang, Indonesia. Nat. Hazards Earth Syst. Sci. 2008, 8, 409–420. [Google Scholar] [CrossRef]
- Li, X. Real-Time High-Rate GNSS Techniques for Earthquake Monitoring and Early Warning. Remote Sens. 2015, 7, 12346–12364. [Google Scholar]
- National Oceanic and Atmospheric Administration. 2021 U.S. Billion-Dollar Weather and Climate Disasters: A Historical Perspective. Climate.gov. 2021. Available online: https://www.climate.gov/news-features/blogs/beyond-data/2021-us-billion-dollar-weather-and-climate-disasters-historical (accessed on 22 December 2024).
- Kreimer, A. Social and Economic Impacts of Natural Disasters. Int. Geol. Rev. 2001, 43, 401–405. [Google Scholar] [CrossRef]
- Keerthiratne, S.; Tol, R.S. Impact of Natural Disasters on Financial Development. Econ. Disasters Clim. Chang. 2017, 1, 33–54. [Google Scholar] [CrossRef]
- Chang, C.P.; Zhang, L.W. Do Natural Disasters Increase Financial Risks? An Empirical Analysis. Bull. Monet. Econ. Bank. 2020, 23, 61–86. [Google Scholar]
- Bhola, V.; Hertelendy, A.; Hart, A.; Adnan, S.B.; Ciottone, G. Escalating costs of billion-dollar disasters in the US: Climate change necessitates disaster risk reduction. J. Clim. Chang. Health 2023, 10, 100201. [Google Scholar] [CrossRef]
- Samad, M.A.; Ali, M.N.; Khairil, M. Indonesian Disaster Governance: Public Policy and Social Economic Impact. Elem. Educ. Online 2021, 20, 73–88. [Google Scholar]
- Damarjati, D. Management Earthquake and Tsunami Disaster in Palu, Indonesia. IJSSHR 2022, 5, 284–288. Available online: https://ijsshr.in/v5i1/38.php (accessed on 22 December 2024).
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Kouchi, K.I.; Yamazaki, F. Characteristics of tsunami-affected areas in moderate resolution satellite images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1650–1657. [Google Scholar] [CrossRef]
- Al-Doski, J.; Mansor, S.B.; Shafri, H.Z.M. NDVI differencing and post-classification to detect vegetation changes in Halabja City, Iraq. IOSR J. Appl. Geol. Geophys. 2013, 1, 1–10. [Google Scholar] [CrossRef]
- Banai, R. Fuzziness in geographic information systems: Contributions from the analytic hierarchy process. Int. J. Geogr. Inf. Syst. 1993, 7, 315–329. [Google Scholar] [CrossRef]
- Dyer, J.S. Remarks on the analytic hierarchy process. Manag. Sci. 1990, 36, 249–258. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
Name | Date (mm/dd/yr) | Source | Location | Earthquake Magnitude | Maximum Water Height (m) | Total Deaths |
---|---|---|---|---|---|---|
2004 Indian Ocean Tsunami | 12/24/2004 | Earthquake | Sumatra | 9.1 | 50.9 | 227,899 |
2005 Nisa-Simeulue Tsunami | 03/28/2005 | Earthquake | Indonesia | 8.6 | 4.2 | 1313 |
2006 Pangandaran Tsunami | 07/17/2006 | Earthquake | South of Java | 7.7 | 20.9 | 802 |
2010 Mentawai Tsunami | 10/25/2010 | Earthquake | Sumatra | 7.8 | 16.9 | 431 |
2018 Sulawesi Tsunami | 09/20/2018 | Earthquake and Volcano | Sulawesi | 7.5 | 10.73 | 4340 |
2018 Sunda strait Tsunami | 12/22/2018 | Volcano and Landslide | Krakatau | * | 85 | 437 |
Satellite and Mission ID | Product Level | Spatial Resolution | Band Number | Production Baseline | Orbit Number | Acquisition Sensing Time | |
---|---|---|---|---|---|---|---|
Pre-tsunami | Sentinel-2 S2B | Level-1C | 10 m | Band 2 Band 3 Band 4 Band 8 | N0206 | R103 | 09/27/2018 |
Sentinel-2 S2B | Level-1C | 20 m | Band 5 Band 6 Band 7 Band 8A Band 11 Band 12 | N0206 | R103 | 09/27/2018 | |
Sentinel-2 S2B | Level-1C | 60 m | Band 1 Band 9 Band 10 | N0206 | R103 | 09/27/2018 | |
Post-tsunami | Sentinel-2 S2A | Level-1C | 10 m | Band 2 Band 3 Band 4 Band 8 | N0206 | R103 | 10/02/2018 |
Sentinel-2 S2A | Level-1C | 20 m | Band 5 Band 6 Band 7 Band 8A Band 11 Band 12 | N0206 | R103 | 10/02/2018 | |
Sentinel-2 S2A | Level-1C | 60 m | Band 1 Band 9 Band 10 | N0206 | R103 | 10/02/2018 |
Satellite | Band Number | Spatial Resolution | Acquisition Sensing Time | |
---|---|---|---|---|
Pre-tsunami | WorldView-3 | 1 Panchromatic band (450–800 nm) | 0.31 m | 08/17/2018 |
WorldView-3 | 8 Visible Near Infrared (VNIR) bands | 1.24 m at nadir | 08/17/2018 | |
WorldView-3 | 8 Shortwave Infrared (SWIR) bands | 3.70 m at nadir | 08/17/2018 | |
WorldView-3 | 12 CAVIS (Clouds, Aerosols, Vapors, Ice, and Snow) bands | 30 m at nadir | 08/17/2018 | |
Post-tsunami | WorldView-3 | 1 Panchromatic band (450–800 nm) | 0.31m | 10/02/2018 |
WorldView-3 | 8 Visible Near Infrared (VNIR) bands | 1.24 m at nadir | 10/02/2018 | |
WorldView-3 | 8 Shortwave Infrared (SWIR) bands | 3.70 m at nadir | 10/02/2018 | |
WorldView-3 | 12 CAVIS (Clouds, Aerosols, Vapors, Ice, and Snow) bands | 30 m at nadir | 10/02/2018 |
Min | Max | Mean | StdDev | |
---|---|---|---|---|
NDVI: Pre-tsunami Imagery (2018/09/27) | −0.32 | 0.95 | 0.37 | 0.20 |
NDVI: Post-tsunami Imagery (2018/10/02) | −0.42 | 0.88 | 0.34 | 0.19 |
Min | Max | Mean | StdDev | |
---|---|---|---|---|
NDWI: Pre-tsunami Imagery (2018/09/27) | −0.95 | 0.50 | −0.38 | 0.17 |
NDWI: Post-tsunami Imagery (2018/10/02) | −0.10 | 0.54 | −0.37 | 0.16 |
Min | Max | Mean | StdDev | |
---|---|---|---|---|
NDSI: Pre-tsunami Imagery (2018/09/27) | −0.66 | 0.66 | 0.11 | 0.08 |
NDSI: Post-tsunami Imagery (2018/10/02) | −0.57 | 0.10 | 0.14 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Barberopoulou, A.; Koch, M. Tracing the 2018 Sulawesi Earthquake and Tsunami’s Impact on Palu, Indonesia: A Remote Sensing Analysis. J. Mar. Sci. Eng. 2025, 13, 178. https://doi.org/10.3390/jmse13010178
Hu Y, Barberopoulou A, Koch M. Tracing the 2018 Sulawesi Earthquake and Tsunami’s Impact on Palu, Indonesia: A Remote Sensing Analysis. Journal of Marine Science and Engineering. 2025; 13(1):178. https://doi.org/10.3390/jmse13010178
Chicago/Turabian StyleHu, Youshuang, Aggeliki Barberopoulou, and Magaly Koch. 2025. "Tracing the 2018 Sulawesi Earthquake and Tsunami’s Impact on Palu, Indonesia: A Remote Sensing Analysis" Journal of Marine Science and Engineering 13, no. 1: 178. https://doi.org/10.3390/jmse13010178
APA StyleHu, Y., Barberopoulou, A., & Koch, M. (2025). Tracing the 2018 Sulawesi Earthquake and Tsunami’s Impact on Palu, Indonesia: A Remote Sensing Analysis. Journal of Marine Science and Engineering, 13(1), 178. https://doi.org/10.3390/jmse13010178