Fast and Deterministic Underwater Point Cloud Registration for Multibeam Echo Sounder Data
Abstract
:1. Introduction
- We propose an efficient and deterministic four-degree-of-freedom underwater point cloud registration method based on the BnB approach, which significantly improves the accuracy and speed of registration. To the best of our knowledge, this is the first application of the BnB method in the field of MBES point cloud registration.
- Through experimental tests conducted on public datasets as well as underwater scenarios in lake environments, our method shows faster processing speeds and higher accuracy compared to other existing point cloud registration techniques, achieving a favorable balance between efficiency and robustness.
2. Related Work
3. Problem Formulation
4. Algorithm Formulation
4.1. Deterministic 4-BnB Algorithm for Registration
4.1.1. Deterministic Rotation Estimation
4.1.2. BnB for Translation Search
- A determination may be reached to exclude from further consideration;
- Or the subcube is subdivided into an octet of smaller hypercubes, whereupon the aforementioned procedural steps are iteratively applied.
4.2. Fast Match Pruning Algorithm
Algorithm 1 Fast match pruning (FMP) |
Require: Initial matches , the inlier threshold .
|
5. Experiments
- RANSAC [14]: an method that utilizes a random sampling approach to find correspondences and estimate geometric transformations between two data sets with the use of pairs of points.
- LM [32]: the 4-DOF LM simplifies optimization for planar movement with four degrees of freedom.
- GTA [33]: a stochastic outlier removal method.
- K4PCS [34]: key-point-based 4PCS speeds up point cloud alignment by focusing on key features.
5.1. Public Dataset Experiment
5.2. Real-World Lake Dataset Experiments
5.2.1. Platform Setup and Data Preparation
5.2.2. Data Preprocessing
5.2.3. Registration Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MBES | Multibeam Echo Sounder |
BnB | Branch and Bound |
IMU | Inertial Measurement Unit |
RANSAC | Random Sample Consensus |
ICP | Iterative Closest Point |
FMP | Fast Marching Pruning |
DOF | Degree of freedom |
iEKF | Iterative Extended Kalman Filter |
GICP | Generalized Iterative Closest Point |
References
- Joshi, B.; Xanthidis, M.; Roznere, M.; Burgdorfer, N.J.; Mordohai, P.; Li, A.Q.; Rekleitis, I. Underwater exploration and mapping. In Proceedings of the IEEE OES AUV Symposium, Singapore, 19–21 September 2022; pp. 1–7. [Google Scholar]
- Hollinger, G.A.; Englot, B.; Hover, F.S.; Mitra, U.; Sukhatme, G.S. Active planning for underwater inspection and the benefit of adaptivity. Int. J. Robot. Res. 2013, 32, 3–18. [Google Scholar] [CrossRef]
- Brown, C.J.; Blondel, P. Developments in the application of multibeam sonar backscatter for seafloor habitat mapping. Appl. Acoust. 2009, 70, 1242–1247. [Google Scholar] [CrossRef]
- Zhang, F.; Tan, T.; Hou, X.; Zhao, L.; Cao, C.; Wang, Z. Underwater mapping and optimization based on multibeam echo sounders. J. Mar. Sci. Eng. 2024, 12, 1222. [Google Scholar] [CrossRef]
- Huang, X.; Mei, G.; Zhang, J.; Abbas, R. A comprehensive survey on point cloud registration. arXiv 2021, arXiv:2103.02690. [Google Scholar]
- Besl, P.J.; McKay, N.D. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Yan, L.; Wei, P.; Xie, H.; Dai, J.; Wu, H.; Huang, M. A new outlier removal strategy based on reliability of correspondence graph for fast point cloud registration. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 7986–8002. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, P.; Hu, Q.; Zhang, Y. Qgore: Quadratic-time guaranteed outlier removal for point cloud registration. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 11136–11151. [Google Scholar] [CrossRef] [PubMed]
- Bustos, Á.P.; Chin, T. Guaranteed outlier removal for point cloud registration with correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2868–2882. [Google Scholar] [CrossRef] [PubMed]
- Fischler, M.A.; Bolles, R.C. Random sample consensus. In Communications of the ACM; ACM: New York, NY, USA, 1981; pp. 381–395. [Google Scholar]
- Salti, S.; Tombari, F.; Stefano, L.D. A performance evaluation of 3d keypoint detectors. In Proceedings of the 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, Hangzhou, China, 16–19 May 2011; Volume 102, pp. 236–243. [Google Scholar]
- Li, H. Consensus set maximization with guaranteed global optimality for robust geometry estimation. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 1074–1080. [Google Scholar]
- Le, H.; Chin, T.; Eriksson, A.; Do, T.; Suter, D. Deterministic approximate methods for maximum consensus robust fitting. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 842–857. [Google Scholar] [CrossRef] [PubMed]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Horst, R.; Tuy, H. Global Optimization: Deterministic Approaches; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Li, X.; Liu, Y.; Xia, Y.; Lakshminarasimhan, V.; Cao, H.; Zhang, F.; Stilla, U.; Knoll, A. Fast and deterministic (3+1)dof point set registration with gravity prior. ISPRS J. Photogramm. Remote Sens. 2023, 199, 118–132. [Google Scholar] [CrossRef]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the icp algorithm. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001. [Google Scholar]
- Li, J.; Hu, Q.; Zhang, Y.; Ai, M. Robust symmetric iterative closest point. ISPRS J. Photogramm. Remote Sens. 2022, 185, 219–231. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Zhang, S.; Zhang, Y. 3d registration with maximal cliques. arXiv 2023, arXiv:2305.10854. [Google Scholar]
- Zhong, Y. Intrinsic shape signatures: A shape descriptor for 3d object recognition. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009. [Google Scholar]
- Abdelhafiz, D.; Youssef, B.; Sheta, W.; Hassan, H. Interest point detection in 3d point cloud data using 3d sobel-harris operator. Int. J. Pattern Recognit. Artif. 2015, 29, 150710022059009. [Google Scholar]
- Steder, B.; Rusu, B.; Konolige, K.; Burgard, W. Narf: 3D Range Image Features for Object Recognition. 2010. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e0701662a370622a1cdbb7c6a83bbede3d0e6c23 (accessed on 25 December 2024).
- Li, Q.; Huang, X.; Shuanggao, L.; Deng, Z. Feature extraction from point clouds for rigid aircraft part inspection using an improved harris algorithm. Meas. Sci. Technol. 2018, 29, 115202. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (fpfh) for 3d registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Shi, J.; Yang, H.; Carlone, L. Robin: A graph-theoretic approach to reject outliers in robust estimation using invariants. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 13820–13827. [Google Scholar]
- Raguram, R.; Frahm, J.; Pollefeys, M. Exploiting uncertainty in random sample consensus. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2074–2081. [Google Scholar]
- Raguram, R.; Chum, O.; Pollefeys, M.; Matas, J.; Frahm, J. Usac: A universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2022–2038. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Li, X.; Yin, X. Dl-ransac: An improved ransac with modified sampling strategy based on the likelihood. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019; pp. 463–468. [Google Scholar]
- Choy, C.; Park, J.; Koltun, V. Fully convolutional geometric features. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Huang, S.; Gojcic, Z.; Usvyatsov, M.; Wieser, A. Konrad Schindler Predator: Registration of 3d point clouds with low overlap. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Cai, Z.; Chin, T.; Bustos, A.P.; Schindler, K. Practical optimal registration of terrestrial lidar scan pairs. ISPRS J. Photogramm. Remote Sens. 2019, 147, 118–131. [Google Scholar] [CrossRef]
- Qi, Z.; Park, J.; Koltun, V. Fast Global Registration. In Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 766–782. [Google Scholar]
- Albarelli, A.; Rodola, E.; Torsello, A. A game-theoretic approach to fine surface registration without initial motion estimation. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar]
- Theiler, P.; Wegner, J.; Schindler, K. Keypoint-based 4-points congruent sets–automated marker-less registration of laser scans. ISPRS J. Photogramm. Remote Sens. 2014, 96, 149–163. [Google Scholar] [CrossRef]
- Ling, L.; Zhang, J.; Bore, N.; Folkesson, J.; Wåhlin, A.K. Benchmarking classical and learning-based multibeam point cloud registration. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 6118–6125. [Google Scholar]
Parameters | Metrics |
---|---|
Operating frequency | 400 kHz–700 kHz, real-time continuously adjustable with a step size of 1 kHz |
Cross-track beam width | 1°@400 kHz; 0.5°@700 kHz |
Along-track beam width | 1°@400 kHz; 0.5°@700 kHz |
Number of beams | 256/512 (Equal angle/equal distance) |
Sector opening angle | 10°–180° real-time continuously adjustable |
Range | 200 m @ 400 KHz |
Pulse width | 10 µs–800 µs |
Ping rate | Up to 50 Hz |
Data | P | Q | ||
---|---|---|---|---|
p1 | 36,956 | 46,648 | 5048 | 5820 |
p2 | 54,912 | 31,170 | 1344 | 734 |
p3 | 86,776 | 16,962 | 3744 | 1209 |
Data | p1 | p2 | p3 |
---|---|---|---|
Before FMP | 1321 | 5148 | 8920 |
After FMP | 18 | 208 | 674 |
Proportion (%) | 1.36 | 4.04 | 7.56 |
Running time (ms) | 77 | 271 | 1072 |
Evaluation Metrics | Data | FMP + BnB | RANSAC-Max-Iter | RANSAC-Min-Iter | LM | GTA | K4PCS |
---|---|---|---|---|---|---|---|
p1 | 0.047 | 89.998 | 2.650 | 49.561 | 70.543 | 136.39 | |
Rotation error | p2 | 0.055 | 0.048 | 0.054 | 40.33 | 0.058 | 178 |
p3 | 0.012 | 0.058 | 0.037 | 0.031 | 0.058 | 0.024 | |
p1 | 0.726 | 1429.414 | 1848.339 | 814.469 | 1084.906 | 1858.82 | |
Translation error | p2 | 0.274 | 0.024 | 3.630 | 750.481 | 0.079 | 1416.354 |
p3 | 0.334 | 0.458 | 0.014 | 0.001 | 0.012 | 0.010 | |
p1 | 2953 | 26,143 | 5109 | 2177 | 2165 | 159,253 | |
Running time (device 1) | p2 | 1408 | 687 | 2434 | 603 | 1008 | 7913 |
p3 | 3628 | 1345 | 2617 | 1297 | 2579 | 115,093 | |
p1 | 2213 | 19,557 | 3918 | 1660 | 1619 | 122,673 | |
Running time (device 2) | p2 | 1050 | 521 | 1939 | 452 | 748 | 6259 |
p3 | 2811 | 1021 | 1950 | 968 | 2036 | 88,598 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Cheng, L.; Tan, T.; Cao, C.; Zhang, F. Fast and Deterministic Underwater Point Cloud Registration for Multibeam Echo Sounder Data. J. Mar. Sci. Eng. 2025, 13, 26. https://doi.org/10.3390/jmse13010026
Zhao L, Cheng L, Tan T, Cao C, Zhang F. Fast and Deterministic Underwater Point Cloud Registration for Multibeam Echo Sounder Data. Journal of Marine Science and Engineering. 2025; 13(1):26. https://doi.org/10.3390/jmse13010026
Chicago/Turabian StyleZhao, Liang, Lan Cheng, Tingfeng Tan, Chun Cao, and Feihu Zhang. 2025. "Fast and Deterministic Underwater Point Cloud Registration for Multibeam Echo Sounder Data" Journal of Marine Science and Engineering 13, no. 1: 26. https://doi.org/10.3390/jmse13010026
APA StyleZhao, L., Cheng, L., Tan, T., Cao, C., & Zhang, F. (2025). Fast and Deterministic Underwater Point Cloud Registration for Multibeam Echo Sounder Data. Journal of Marine Science and Engineering, 13(1), 26. https://doi.org/10.3390/jmse13010026