Remote Sensing Shoreline Extraction Method Based on an Optimized DeepLabV3+ Model: A Case Study of Koh Lan Island, Thailand
Abstract
:1. Introduction
1.1. Shoreline Measurement: Traditional Limitations and Remote Sensing Innovations
1.2. Artificial Intelligence Algorithms Empower Remote Sensing Shoreline Extraction
- (1)
- In response to the challenges of feature extraction in complex coastal environments, this study innovatively integrates a Strip Pooling layer and CBAM dual-attention modules into the DeepLabV3+ model, constructing a network architecture capable of perceiving multi-scale contextual information. The Strip Pooling layer enables the model to effectively capture long-range spatial dependencies of shorelines, while the CBAM channel-spatial attention mechanism dynamically enhances key features. This combination improves the model’s ability to identify fragmented shorelines and areas with blurred textures. Tested on a drone dataset from Koh Lan Island, Thailand, the model achieved a pixel accuracy (PA) of 98.7% and an intersection over union (IoU) of 96.2%, surpassing classic models such as U-Net, FCN8, SegNet, and the original DeepLabV3+ model. This achievement offers a novel solution for shoreline extraction from high-resolution remote sensing imagery.
- (2)
- To address the issue of low computational efficiency in traditional deep learning models, we redesigned the backbone network of DeepLabV3+ by replacing Xception with MobileNetV2 and incorporating depthwise separable convolutions. This optimization reduced the number of parameters by 88% and the floating-point operations (FLOPs) by 67%, enabling real-time processing on UAV platforms. The lightweight design maintains high accuracy while reducing hardware requirements, making it suitable for resource-constrained environments.
- (3)
- The integration of UAVs and deep learning offers a scalable solution for dynamic shoreline monitoring, especially in data-scarce island regions. By automating high-precision shoreline extraction, this framework supports critical applications such as erosion risk assessment, disaster response, and sustainable coastal planning.
2. Materials and Methods
2.1. Study Area and Data Collection
2.1.1. Overview of the Study Area
2.1.2. Data Acquisition and Preprocessing
2.1.3. Training Environment Setup
2.2. Construction of the Optimized DeepLabV3+ Model
2.2.1. Backbone Extraction Network Replacement
2.2.2. Strip Pooling Layer
2.2.3. CBAM Attention Mechanism
2.2.4. Loss Function and Evaluation Metrics
3. Results
3.1. Training Results of Different Attention Mechanisms
3.2. Segmentation Accuracy Evaluation
3.3. Model Efficiency Evaluation
4. Discussion
4.1. Comparison of Attention Mechanism Training Effects
4.2. Comprehensive Analysis of Improved Algorithm Performance
4.3. Performance Superiority of Improved Algorithm in Different Coastline Extraction Conditions
4.4. Future Outlook and Directions for Improvement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Chu, S.; Hu, Q.; Cong, Y.; Cheng, J.; Chen, H.; Cheng, L.; Zhang, G.; Xing, S. Land-sea classification based on the fast feature detection model for ICESat-2 ATL03 datasets. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103916. [Google Scholar] [CrossRef]
- Mao, Y.; Harris, D.L.; Xie, Z.; Phinn, S.; Sensing, R. Efficient measurement of large-scale decadal shoreline change with increased accuracy in tide-dominated coastal environments with Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 181, 385–399. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.; Yue, Q.; Teng, X.; Hu, H. Problems and countermeasures of coastline protection and utilization in China. Ocean Coast Manage. 2018, 153, 124–130. [Google Scholar] [CrossRef]
- Arkema, K.K.; Verutes, G.M.; Wood, S.A.; Clarke-Samuels, C.; Rosado, S.; Canto, M.; Rosenthal, A.; Ruckelshaus, M.; Guannel, G.; Toft, J. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl. Acad. Sci. USA 2015, 112, 7390–7395. [Google Scholar] [CrossRef]
- Martínez, C.; Contreras-López, M.; Winckler, P.; Hidalgo, H.; Godoy, E.; Agredano, R. Coastal erosion in central Chile: A new hazard? Ocean Coast Manage. 2018, 156, 141–155. [Google Scholar] [CrossRef]
- Xu, N.; Gong, P. Significant coastline changes in China during 1991–2015 tracked by Landsat data. Sci. Bull. 2018, 63, 883–886. [Google Scholar] [CrossRef]
- Cáceres, F.; Wadsworth, F.B.; Scheu, B.; Colombier, M.; Madonna, C.; Cimarelli, C.; Hess, K.-U.; Kaliwoda, M.; Ruthensteiner, B.; Dingwell, D.B. Can nanolites enhance eruption explosivity? Geology 2020, 48, 997–1001. [Google Scholar] [CrossRef]
- Qiao, G.; Mi, H.; Wang, W.; Tong, X.; Li, Z.; Li, T.; Liu, S.; Hong, Y. 55-year (1960–2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 238–251. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Farris, A.S.; Kratzmann, M.G.; Ergul, A.; McAndrews, J.; Cibaj, R.; Zichichi, J.L.; Thieler, E.R. Digital Shoreline Analysis System Version 6.0; US Geological Survey: Reston, VA, USA, 2024.
- Troy, C.D.; Cheng, Y.-T.; Lin, Y.-C.; Habib, A. Rapid lake Michigan shoreline changes revealed by UAV LiDAR surveys. Coast. Eng. 2021, 170, 104008. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.-F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef]
- Ataol, M.; Kale, M.M. Shoreline changes in the river mouths of the Ceyhan Delta. Arab. J. Geosci. 2022, 15, 201. [Google Scholar] [CrossRef]
- Medhioub, E.; Hentati, I. A Shoreline Change Analysis Using Satellite Images Survey and DSAS Technique: A Case Study of Monastir-Chebba Coast, Tunisia; Springer: Cham, Switzerland, 2024; pp. 753–757. [Google Scholar]
- Hossain, M.S.; Yasir, M.; Wang, P.; Ullah, S.; Jahan, M.; Hui, S.; Zhao, Z. Automatic shoreline extraction and change detection: A study on the southeast coast of Bangladesh. Mar. Geol. 2021, 441, 106628. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, L.; Arnqvist, J.; Hallgren, C.; Rutgersson, A. Mapping coastal upwelling in the Baltic Sea from 2002 to 2020 using remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103061. [Google Scholar] [CrossRef]
- Shamsuzzoha, M.; Ahamed, T. Shoreline Change Assessment in the Coastal Region of Bangladesh Delta Using Tasseled Cap Transformation from Satellite Remote Sensing Dataset. Remote Sens. 2023, 15, 295. [Google Scholar] [CrossRef]
- Dai, C.; Howat, I.M.; Larour, E.; Husby, E. Coastline extraction from repeat high resolution satellite imagery. Remote Sens. Environ. 2019, 229, 260–270. [Google Scholar] [CrossRef]
- Paravolidakis, V.; Ragia, L.; Moirogiorgou, K.; Zervakis, M.E. Automatic Coastline Extraction Using Edge Detection and Optimization Procedures. Geosciences 2018, 8, 407. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, W.; Cao, J.; Xie, G. MKANet: An efficient network with Sobel boundary loss for land-cover classification of satellite remote sensing imagery. Remote Sens. 2022, 14, 4514. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y. Monitoring coastline variations in the Pearl River Estuary from 1978 to 2018 by integrating Canny edge detection and Otsu methods using long time series Landsat dataset. Catena 2022, 209, 105840. [Google Scholar] [CrossRef]
- Teng, J.; Xia, S.; Liu, Y.; Yu, X.; Duan, H.; Xiao, H.; Zhao, C. Assessing habitat suitability for wintering geese by using Normalized Difference Water Index (NDWI) in a large floodplain wetland, China. Ecol. Indic. 2021, 122, 107260. [Google Scholar] [CrossRef]
- Rashid, M.B. Monitoring of drainage system and waterlogging area in the human-induced Ganges-Brahmaputra tidal delta plain of Bangladesh using MNDWI index. Heliyon 2023, 9, e17412. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Li, R.; Li, X. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images. Remote Sens. Environ. 2020, 239, 111665. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Dai, S. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 2020, 238, 110987. [Google Scholar] [CrossRef] [PubMed]
- Seale, C.; Redfern, T.; Chatfield, P.; Luo, C.; Dempsey, K. Coastline detection in satellite imagery: A deep learning approach on new benchmark data. Remote Sens. Environ. 2022, 278, 113044. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Z. Research progress on methods of automatic coastline extraction based on remote sensing images. Natl. Remote Sens. Bulletin. 2019, 23, 582–602. [Google Scholar] [CrossRef]
- Bi, Q.; Zhang, H.; Qin, K. Multi-scale stacking attention pooling for remote sensing scene classification. Neurocomputing 2021, 436, 147–161. [Google Scholar] [CrossRef]
- Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Q.; Jiang, P.; Zheng, Y.; Yuan, L.; Yuan, P. LDS-YOLO: A lightweight small object detection method for dead trees from shelter forest. Comput. Electron. Agric. 2022, 198, 107035. [Google Scholar] [CrossRef]
- Bayraktar, E.; Basarkan, M.E.; Celebi, N. A low-cost UAV framework towards ornamental plant detection and counting in the wild. ISPRS J. Photogramm. Remote Sens. 2020, 167, 1–11. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.o.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Dang, K.B.; Vu, K.C.; Nguyen, H.; Nguyen, D.A.; Nguyen, T.D.L.; Pham, T.P.N.; Giang, T.L.; Nguyen, H.D.; Do, T.H. Application of deep learning models to detect coastlines and shorelines. J. Environ. Manag. 2022, 320, 115732. [Google Scholar] [CrossRef]
- Scala, P.; Manno, G.; Ciraolo, G. Semantic segmentation of coastal aerial/satellite images using deep learning techniques: An application to coastline detection. Comput. Geosci. 2024, 192, 105704. [Google Scholar] [CrossRef]
- Feng, J.; Wang, S.; Gu, Z. A Novel Sea-Land Segmentation Network for Enhanced Coastline Extraction using Satellite Remote Sensing Images. Adv. Space Res. 2024, 74, 5. [Google Scholar] [CrossRef]
- Aryal, B.; Escarzaga, S.M.; Vargas Zesati, S.A.; Velez-Reyes, M.; Fuentes, O.; Tweedie, C. Semi-Automated Semantic Segmentation of Arctic Shorelines Using Very High-Resolution Airborne Imagery, Spectral Indices and Weakly Supervised Machine Learning Approaches. Remote Sens. 2021, 13, 4572. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, B.; Yu, G.; Zhang, R.; Tan, H.; Dong, F.; Bian, H. Accurate cotton verticillium wilt segmentation in field background based on the two-stage lightweight DeepLabV3+ model. Comput. Electron. Agric. 2025, 229, 109814. [Google Scholar] [CrossRef]
- Du, S.; Du, S.; Liu, B.; Zhang, X. Incorporating DeepLabv3+ and object-based image analysis for semantic segmentation of very high resolution remote sensing images. Int. J. Digit. Earth. 2021, 14, 357–378. [Google Scholar] [CrossRef]
- Pires de Lima, R.; Marfurt, K. Convolutional neural network for remote-sensing scene classification: Transfer learning analysis. Remote Sens. 2019, 12, 86. [Google Scholar] [CrossRef]
- Karadal, C.H.; Kaya, M.C.; Tuncer, T.; Dogan, S.; Acharya, U.R. Automated classification of remote sensing images using multileveled MobileNetV2 and DWT techniques. Expert Syst. Appl. 2021, 185, 115659. [Google Scholar] [CrossRef]
- Qu, Y.; Xia, M.; Zhang, Y. Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow. Comput. Geosci. 2021, 157, 104940. [Google Scholar] [CrossRef]
- He, C.; Liu, Y.; Wang, D.; Liu, S.; Yu, L.; Ren, Y. Automatic extraction of bare soil land from high-resolution remote sensing images based on semantic segmentation with deep learning. Remote Sens. 2023, 15, 1646. [Google Scholar] [CrossRef]
- Yang, X.; Li, S.; Chen, Z.; Chanussot, J.; Jia, X.; Zhang, B.; Li, B.; Chen, P. An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2021, 177, 238–262. [Google Scholar] [CrossRef]
- Zheng, X.; Huan, L.; Xia, G.-S.; Gong, J. Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss. ISPRS J. Photogramm. Remote Sens. 2020, 170, 15–28. [Google Scholar] [CrossRef]
- Su, Z.; Li, W.; Ma, Z.; Gao, R. An improved U-Net method for the semantic segmentation of remote sensing images. Appl. Intell. 2022, 52, 3276–3288. [Google Scholar] [CrossRef]
- Gonçalves, R.M.; Saleem, A.; Queiroz, H.A.A.; Awange, J.L. A fuzzy model integrating shoreline changes, NDVI and settlement influences for coastal zone human impact classification. Appl. Geogr. 2019, 113, 102093. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Kumar, L.; Roy, C. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2015, 101, 137–144. [Google Scholar] [CrossRef]
- Xu, L.; Ming, D.; Du, T.; Chen, Y.; Dong, D.; Zhou, C. Delineation of cultivated land parcels based on deep convolutional networks and geographical thematic scene division of remotely sensed images. Comput. Electron. Agric. 2022, 192, 106611. [Google Scholar] [CrossRef]
- Du, Y.; Song, W.; He, Q.; Huang, D.; Liotta, A.; Su, C. Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection. Inform. Fusion. 2019, 49, 89–99. [Google Scholar] [CrossRef]
- Yang, X.; Fan, X.; Peng, M.; Guan, Q.; Tang, L. Semantic segmentation for remote sensing images based on an AD-HRNet model. Int. J. Digit. Earth 2022, 15, 2376–2399. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Yue, X.; Liu, D.; Wang, L.; Benediktsson, J.A.; Meng, L.; Deng, L. IESRGAN: Enhanced U-Net Structured Generative Adversarial Network for Remote Sensing Image Su-per-Resolution Reconstruction. Remote Sens. 2021, 15, 3490. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Yorulmaz, E.B.; Kartal, E.; Demirel, M.C. Toward robust pattern similarity metric for distributed model evaluation. Stoch. Environ. Res. Risk Assess. 2024, 38, 4007–4025. [Google Scholar] [CrossRef]
- Cai, W.; Wei, Z. Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Li, L.; Liang, P.; Ma, J.; Jiao, L.; Guo, X.; Liu, F.; Sun, C. A multiscale self-adaptive attention network for remote sensing scene classification. Remote Sens. 2020, 12, 2209. [Google Scholar] [CrossRef]
- Yin, Y.; Guo, Y.; Deng, L.; Chai, B. Improved PSPNet-based water shoreline detection in complex inland river scenarios. Complex Intell. Syst. 2023, 9, 233–245. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, S.; Hong, Z.; Zhang, Y.; Han, Y.; Zhou, R.; Wang, J.; Yang, S.; Tong, X.; Kuc, T.-y. Sea-land segmentation using deep learning techniques for landsat-8 OLI imagery. Mar. Geod. 2020, 43, 105–133. [Google Scholar] [CrossRef]
- Aghdami-Nia, M.; Shah-Hosseini, R.; Rostami, A.; Homayouni, S. Automatic coastline extraction through enhanced sea-land segmentation by modifying Standard U-Net. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102785. [Google Scholar] [CrossRef]
- Scarelli, F.M.; Sistilli, F.; Fabbri, S.; Cantelli, L.; Barboza, E.G.; Gabbianelli, G. Seasonal dune and beach monitoring using photogrammetry from UAV surveys to apply in the ICZM on the Ravenna coast (Emilia-Romagna, Italy). Remote Sens. Appl. Soc. Environ. 2017, 7, 27–39. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, D.; Cutler, M.E.J.; Xu, N.; Wang, X.H.; Sha, H.; Shen, Y. Estimating muddy intertidal flat slopes under varied coastal morphology using sequential satellite data and spatial analysis. Estuar. Coast. Shelf Sci. 2021, 251, 107183. [Google Scholar] [CrossRef]
Methods | Principles | Advantages | Disadvantages |
---|---|---|---|
Edge Detection Method [19,20] | The shoreline position is determined by identifying areas in the image with significant changes in brightness. | Performs well in extracting natural boundaries. | Highly sensitive to image noise, making it difficult to distinguish the shoreline from other edges. |
Thresholding Method [21,22,23] | By setting a specific brightness threshold, the image is converted into a binary image to highlight features such as the shoreline. | Can highlight features such as the shoreline. | The selection of thresholds often relies on empirical judgment, and it is challenging to find a universally applicable threshold under varying lighting conditions and water-land contrast. |
Image Segmentation Method [24,25] | Based on pixel characteristics such as color and texture, the shoreline is separated from its surrounding environment. | Can roughly outline the contours of the shoreline. | Its effectiveness is limited by the clarity of the image and the contrast between the shoreline and its surroundings. |
Experimental Environment Items | Configuration |
---|---|
Operating System | Linux 5.4.0 Operating System |
Development Language | Python3.8 |
Deep Learning Framework | Pytorch1.12.0 |
CPU | AMD EPYC 7542 (Advanced Micro Devices, Inc., Santa Clara, CA, USA) |
GPU | NVIDIA RTX3090 (24G) (NVIDIA Corporation, Santa Clara, CA, USA) |
Attention Mechanisms | Network Structural Stage | Evaluation Metrics | ||
---|---|---|---|---|
1 | 2 | PA/% | IoU/% | |
CBAM | 95.6 | 87.9 | ||
CBAM | √ | 97.2 | 92.5 | |
CBAM | √ | 96.8 | 91.7 | |
CBAM | √ | √ | 98.7 | 96.1 |
SE-Ne | √ | √ | 98.5 | 95.6 |
CA | √ | √ | 97.5 | 94.5 |
MobilenetV2 | CBAM | Strip Pooling | F1-Score/% | IoU/% | GFLOPS/GFLOPS | Parameter/M |
---|---|---|---|---|---|---|
91.0 | 83.5 | 54.70 | 20.80 | |||
√ | 90.8 | 83.9 | 5.81 | 6.61 | ||
√ | √ | 95.2 | 91.4 | 6.12 | 6.65 | |
√ | √ | √ | 98.0 | 96.2 | 6.61 | 6.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Guo, Z.; Zhang, Z.; Plathong, S.; Jantharakhantee, C.; Ma, J.; Ning, H.; Qi, Y. Remote Sensing Shoreline Extraction Method Based on an Optimized DeepLabV3+ Model: A Case Study of Koh Lan Island, Thailand. J. Mar. Sci. Eng. 2025, 13, 665. https://doi.org/10.3390/jmse13040665
Shen J, Guo Z, Zhang Z, Plathong S, Jantharakhantee C, Ma J, Ning H, Qi Y. Remote Sensing Shoreline Extraction Method Based on an Optimized DeepLabV3+ Model: A Case Study of Koh Lan Island, Thailand. Journal of Marine Science and Engineering. 2025; 13(4):665. https://doi.org/10.3390/jmse13040665
Chicago/Turabian StyleShen, Jiawei, Zhen Guo, Zhiwei Zhang, Sakanan Plathong, Chanokphon Jantharakhantee, Jinchao Ma, Huanshan Ning, and Yuhang Qi. 2025. "Remote Sensing Shoreline Extraction Method Based on an Optimized DeepLabV3+ Model: A Case Study of Koh Lan Island, Thailand" Journal of Marine Science and Engineering 13, no. 4: 665. https://doi.org/10.3390/jmse13040665
APA StyleShen, J., Guo, Z., Zhang, Z., Plathong, S., Jantharakhantee, C., Ma, J., Ning, H., & Qi, Y. (2025). Remote Sensing Shoreline Extraction Method Based on an Optimized DeepLabV3+ Model: A Case Study of Koh Lan Island, Thailand. Journal of Marine Science and Engineering, 13(4), 665. https://doi.org/10.3390/jmse13040665