Feasibility, Advantages, and Limitations of Machine Learning for Identifying Spilled Oil in Offshore Conditions
Abstract
:1. Introduction and Literature Review
1.1. Introduction
- Which model was the most effective?
- What was the model’s accuracy for a specific oil type?
- What was the contribution of input parameters (features) to the model’s accuracy?
- Can the performance of the model be improved by manipulating the feature?
- How did model performance change in response to uncertainty in input values?
1.2. Literature Review
2. Methods
2.1. Dataset Preparation and Feature Selection
2.1.1. Model Target Selection
2.1.2. Oil Spill Simulation
2.1.3. Data Collection and Preprocessing
2.1.4. Feature Selection
2.2. ML Algorithms
2.2.1. Decision Tree
2.2.2. Random Forest
2.2.3. Extra Tree
2.2.4. Gradient Boosting
2.2.5. Histogram-Based Gradient Boosting
2.3. Hyperparameter Tuning
2.4. Evaluation Measures
3. Results
3.1. Prediction Performance and Contribution of Features
3.2. Performance Changes with Fewer Features
3.3. Performance Changes with More Features
3.4. Effect of Widespread Data in Property Features
3.5. Effect of Input Uncertainty
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FAL | Feasibility, advantages, and limitations |
ET | Extra tree |
HGB | Histogram-based gradient boosting |
GC | Gas chromatography |
GC-MS | Gas chromatography–mass spectrometry |
PAHs | Polycyclic aromatic hydrocarbons |
FID | Flame ionization detection |
IR | Infrared spectroscopy |
NMR | Nuclear magnetic resonance |
PLS-DA | Partial least squares discrimination analysis |
HOG | Histogram of oriented gradients |
SVM | Support vector machine |
CNNs | Convolutional neural networks |
WCO | Weathered crude oil |
CDO | Chemically dispersed oil |
GC-HRMS | Gas chromatography–high-resolution mass spectrometry |
EEM | Fluorescence excitation–emission matrix |
PCA | Principal component analysis |
LDA | Linear discriminant analysis |
LIF | Laser-induced fluorescence |
API gravity | American Petroleum Institute gravity |
IMO | International Maritime Organization |
MA | Maya |
BH | Basrah heavy |
AM | Arabian medium |
IH | Iranian heavy |
KU | Kuwait |
AL | Arabian light |
HO | Hout |
BL | Basrah Light Mobil Oil Australia |
WTI | West Texas Intermediate |
AELA | Arabian Extra Light Aramco |
ULSD | Ultra-low Sulfur Diesel |
MSO | Murban Shell Oil |
ADIOS2 | Automated Data Inquiry for Oil Spills 2 |
RCD | Rate of change in density |
RCV | Rate of change in viscosity |
CART | Classification and regression tree |
DT | Decision tree |
RF | Random forest |
GB | Gradient boosting |
TN | True negatives |
FP | False positives |
FN | False negatives |
TP | True positives |
Appendix A
Viscosity Bin Center (cSt) | AELA | AM | AL | BL | BH | HO | IH | KU | MA | MSO | ULSD | WTI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
25 | 16 | 5 | 8 | 12 | 1 | 4 | 7 | 8 | 0 | 45 | 242 | 50 |
75 | 36 | 11 | 13 | 25 | 0 | 10 | 5 | 3 | 0 | 22 | 32 | 27 |
125 | 17 | 11 | 7 | 19 | 3 | 12 | 7 | 10 | 0 | 18 | 0 | 7 |
175 | 17 | 7 | 14 | 7 | 0 | 7 | 8 | 15 | 1 | 3 | 0 | 3 |
225 | 7 | 11 | 9 | 7 | 0 | 13 | 10 | 4 | 1 | 8 | 0 | 2 |
275 | 5 | 0 | 8 | 6 | 0 | 9 | 4 | 11 | 1 | 1 | 0 | 2 |
325 | 1 | 5 | 7 | 3 | 0 | 7 | 4 | 5 | 0 | 2 | 0 | 1 |
375 | 3 | 7 | 1 | 6 | 0 | 4 | 6 | 8 | 0 | 0 | 0 | 2 |
425 | 1 | 3 | 4 | 3 | 1 | 4 | 4 | 4 | 0 | 3 | 0 | 1 |
475 | 3 | 6 | 2 | 0 | 1 | 1 | 3 | 2 | 0 | 3 | 0 | 4 |
525 | 2 | 7 | 1 | 0 | 1 | 5 | 4 | 8 | 0 | 1 | 0 | 0 |
575 | 2 | 2 | 2 | 4 | 1 | 3 | 3 | 5 | 0 | 2 | 0 | 0 |
625 | 1 | 2 | 2 | 0 | 0 | 4 | 3 | 4 | 0 | 2 | 0 | 1 |
675 | 1 | 0 | 0 | 1 | 0 | 0 | 5 | 1 | 0 | 3 | 0 | 1 |
725 | 1 | 1 | 3 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 4 |
775 | 1 | 0 | 3 | 1 | 1 | 1 | 4 | 4 | 1 | 2 | 0 | 2 |
825 | 3 | 3 | 4 | 0 | 2 | 2 | 0 | 2 | 0 | 1 | 0 | 1 |
875 | 0 | 0 | 1 | 1 | 2 | 0 | 3 | 2 | 0 | 4 | 0 | 2 |
925 | 1 | 2 | 0 | 2 | 1 | 0 | 0 | 3 | 1 | 3 | 0 | 1 |
975 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
References
- Zhao, P.; Zhao, Y.; Zou, C.; Gu, T. Study on Ultrasonic Extraction of Kerogen from Huadian Oil Shale by Solvents. Oil Shale 2013, 30, 491. [Google Scholar] [CrossRef]
- Sulaiman, M.A.; Oni, A.O.; Fadare, D.A. Energy and Exergy Analysis of a Vegetable Oil Refinery. Energy Power Eng. 2012, 04, 358–364. [Google Scholar] [CrossRef]
- Kowalski, R.; Baj, T.; Kowalska, G.; Pankiewicz, U. Estimation of Potential Availability of Essential Oil in Some Brands of Herbal Teas and Herbal Dietary Supplements. PLoS ONE 2015, 10, e0130714. [Google Scholar] [CrossRef]
- Tian, H.; Liao, Z.Z. Experimental Study on the Effect of Ultrasonic Cavitation on Pyrolysis Characteristics of Oil Shale. Appl. Mech. Mater. 2013, 295–298, 3117–3123. [Google Scholar] [CrossRef]
- Perhar, G.; Arhonditsis, G.B. Aquatic Ecosystem Dynamics Following Petroleum Hydrocarbon Perturbations: A Review of the Current State of Knowledge. J. Great Lakes Res. 2014, 40, 56–72. [Google Scholar] [CrossRef]
- Jha, M.; Levy, J.; Gao, Y. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance. Sensors 2008, 8, 236–255. [Google Scholar] [CrossRef]
- Li, P.; Cai, Q.; Lin, W.; Chen, B.; Zhang, B. Offshore Oil Spill Response Practices and Emerging Challenges. Mar. Pollut. Bull. 2016, 110, 6–27. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, D.; Connolly, S. Just oil? The distribution of environmental and social impacts of oil production and consumption. Annu. Rev. Environ. Resour. 2003, 28, 587–617. [Google Scholar] [CrossRef]
- Mishra, A.K.; Kumar, G.S. Weathering of Oil Spill: Modeling and Analysis. Aquat. Procedia 2015, 4, 435–442. [Google Scholar] [CrossRef]
- Neff, J.M.; Ostazeski, S.; Gardiner, W.; Stejskal, I. Effects of Weathering on the Toxicity of Three Offshore Australian Crude Oils and a Diesel Fuel to Marine Animals. Enviro. Toxic. Chem. 2000, 19, 1809–1821. [Google Scholar] [CrossRef]
- Freeman, D.H.; Niles, S.F.; Rodgers, R.P.; French-McCay, D.P.; Longnecker, K.; Reddy, C.M.; Ward, C.P. Hot and Cold: Photochemical Weathering Mediates Oil Properties and Fate Differently Depending on Seawater Temperature. Environ. Sci. Technol. 2023, 57, 11988–11998. [Google Scholar] [CrossRef] [PubMed]
- Aeppli, C.; Mitchell, D.A.; Keyes, P.; Beirne, E.C.; McFarlin, K.M.; Roman-Hubers, A.T.; Rusyn, I.; Prince, R.C.; Zhao, L.; Parkerton, T.F.; et al. Oil Irradiation Experiments Document Changes in Oil Properties, Molecular Composition, and Dispersant Effectiveness Associated with Oil Photo-Oxidation. Environ. Sci. Technol. 2022, 56, 7789–7799. [Google Scholar] [CrossRef] [PubMed]
- Ward, C.P.; Armstrong, C.J.; Conmy, R.N.; French-McCay, D.P.; Reddy, C.M. Photochemical Oxidation of Oil Reduced the Effectiveness of Aerial Dispersants Applied in Response to the Deepwater Horizon Spill. Environ. Sci. Technol. Lett. 2018, 5, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.C.G.; Gonçalves, M.A.L. Emulsion Rheology—Theory vs. Field Observation. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2005. [Google Scholar]
- Boehm, P.D.; Douglas, G.S.; Burns, W.A.; Mankiewicz, P.J.; Page, D.S.; Bence, A.E. Application of Petroleum Hydrocarbon Chemical Fingerprinting and Allocation Techniques after the Exxon Valdez Oil Spill. Mar. Pollut. Bull. 1997, 34, 599–613. [Google Scholar] [CrossRef]
- Mirnaghi, F.S.; Soucy, N.; Hollebone, B.P.; Brown, C.E. Rapid Fingerprinting of Spilled Petroleum Products Using Fluorescence Spectroscopy Coupled with Parallel Factor and Principal Component Analysis. Chemosphere 2018, 208, 185–195. [Google Scholar] [CrossRef]
- Yim, U.H.; Kim, M.; Ha, S.Y.; Kim, S.; Shim, W.J. Oil Spill Environmental Forensics: The Hebei Spirit Oil Spill Case. Environ. Sci. Technol. 2012, 46, 6431–6437. [Google Scholar] [CrossRef]
- Roman-Hubers, A.T.; McDonald, T.J.; Baker, E.S.; Chiu, W.A.; Rusyn, I. A Comparative Analysis of Analytical Techniques for Rapid Oil Spill Identification. Enviro. Toxic. Chem. 2021, 40, 1034–1049. [Google Scholar] [CrossRef]
- Wang, Z.; Fingas, M. Developments in the Analysis of Petroleum Hydrocarbons in Oils, Petroleum Products and Oil-Spill-Related Environmental Samples by Gas Chromatography. J. Chromatogr. A 1997, 774, 51–78. [Google Scholar] [CrossRef]
- Ehrhardt, M.; Blumer, M. The Source Identification of Marine Hydrocarbons by Gas Chromatography. Environ. Pollut. 1972, 3, 179–194. [Google Scholar] [CrossRef]
- Wakeham, S.G.; Farrington, J.W.; Gagosian, R.B.; Lee, C.; DeBaar, H.; Nigrelli, G.E.; Tripp, B.W.; Smith, S.O.; Frew, N.M. Organic Matter Fluxes from Sediment Traps in the Equatorial Atlantic Ocean. Nature 1980, 286, 798–800. [Google Scholar] [CrossRef]
- Gaines, R.B.; Frysinger, G.S.; Hendrick-Smith, M.S.; Stuart, J.D. Oil Spill Source Identification by Comprehensive Two-Dimensional Gas Chromatography. Environ. Sci. Technol. 1999, 33, 2106–2112. [Google Scholar] [CrossRef]
- Nelson, R.K.; Gosselin, K.M.; Hollander, D.J.; Murawski, S.A.; Gracia, A.; Reddy, C.M.; Radović, J.R. Exploring the Complexity of Two Iconic Crude Oil Spills in the Gulf of Mexico (Ixtoc I and Deepwater Horizon) Using Comprehensive Two-Dimensional Gas Chromatography (GC × GC). Energy Fuels 2019, 33, 3925–3933. [Google Scholar] [CrossRef]
- Sun, P.; Bao, M.; Li, G.; Wang, X.; Zhao, Y.; Zhou, Q.; Cao, L. Fingerprinting and Source Identification of an Oil Spill in China Bohai Sea by Gas Chromatography-Flame Ionization Detection and Gas Chromatography—Mass Spectrometry Coupled with Multi-Statistical Analyses. J. Chromatogr. A 2009, 1216, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guo, G.; Yan, Z.; Lu, G.; Wang, Q.; Li, F. The Development of a Method for the Qualitative and Quantitative Determination of Petroleum Hydrocarbon Components Using Thin-Layer Chromatography with Flame Ionization Detection. J. Chromatogr. A 2010, 1217, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Lovatti, B.P.O.; Silva, S.R.C.; Portela, N.D.A.; Sad, C.M.S.; Rainha, K.P.; Rocha, J.T.C.; Romão, W.; Castro, E.V.R.; Filgueiras, P.R. Identification of Petroleum Profiles by Infrared Spectroscopy and Chemometrics. Fuel 2019, 254, 115670. [Google Scholar] [CrossRef]
- Yuan, L.; Meng, X.; Xin, K.; Ju, Y.; Zhang, Y.; Yin, C.; Hu, L. A Comparative Study on Classification of Edible Vegetable Oils by Infrared, near Infrared and Fluorescence Spectroscopy Combined with Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 288, 122120. [Google Scholar] [CrossRef]
- Frank, U. A Review of Fluorescence Spectroscopic Methods for Oil Spill Source Identification. Toxicol. Environ. Chem. Rev. 1978, 2, 163–185. [Google Scholar] [CrossRef]
- Christensen, J.H.; Tomasi, G. Practical Aspects of Chemometrics for Oil Spill Fingerprinting. J. Chromatogr. A 2007, 1169, 1–22. [Google Scholar] [CrossRef]
- Silva, S.L.; Silva, A.M.S.; Ribeiro, J.C.; Martins, F.G.; Da Silva, F.A.; Silva, C.M. Chromatographic and Spectroscopic Analysis of Heavy Crude Oil Mixtures with Emphasis in Nuclear Magnetic Resonance Spectroscopy: A Review. Anal. Chim. Acta 2011, 707, 18–37. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Luan, X.; Liu, Q.; Zhang, J.; Zheng, R. Species Identification and Concentration Quantification of Crude Oil Samples in Petroleum Exploration Using the Concentration-Synchronous-Matrix-Fluorescence Spectroscopy. Talanta 2010, 81, 684–691. [Google Scholar] [CrossRef]
- Aeppli, C.; Nelson, R.K.; Radović, J.R.; Carmichael, C.A.; Valentine, D.L.; Reddy, C.M. Recalcitrance and Degradation of Petroleum Biomarkers upon Abiotic and Biotic Natural Weathering of Deepwater Horizon Oil. Environ. Sci. Technol. 2014, 48, 6726–6734. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, B.; Zhang, B.; He, S.; Zhao, M. Fingerprint and Weathering Characteristics of Crude Oils after Dalian Oil Spill, China. Mar. Pollut. Bull. 2013, 71, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Clement, T.P. Development of a Field Testing Protocol for Identifying Deepwater Horizon Oil Spill Residues Trapped near Gulf of Mexico Beaches. PLoS ONE 2018, 13, e0190508. [Google Scholar] [CrossRef]
- Gaweł, B.; Eftekhardadkhah, M.; Øye, G. Elemental Composition and Fourier Transform Infrared Spectroscopy Analysis of Crude Oils and Their Fractions. Energy Fuels 2014, 28, 997–1003. [Google Scholar] [CrossRef]
- Palacio Lozano, D.C.; Orrego-Ruiz, J.A.; Cabanzo Hernández, R.; Guerrero, J.E.; Mejía-Ospino, E. APPI(+)-FTICR Mass Spectrometry Coupled to Partial Least Squares with Genetic Algorithm Variable Selection for Prediction of API Gravity and CCR of Crude Oil and Vacuum Residues. Fuel 2017, 193, 39–449. [Google Scholar] [CrossRef]
- Prata, P.S.; Alexandrino, G.L.; Mogollón, N.G.S.; Augusto, F. Discriminating Brazilian Crude Oils Using Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry and Multiway Principal Component Analysis. J. Chromatogr. A 2016, 1472, 99–106. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Gorziza, R.P.; De Cássia Mariotti, K.; Pereira Limberger, R. Methodologies Applied to Fingerprint Analysis. J. Forensic Sci. 2020, 65, 1040–1048. [Google Scholar] [CrossRef]
- Zhang, L.; Du, F.; Wang, Y.; Li, Y.; Yang, C.; Li, S.; Huang, X.; Wang, C. Oil Fingerprint Identification Technology Using a Simplified Set of Biomarkers Selected Based on Principal Component Difference. Can. J. Chem. Eng. 2022, 100, 23–34. [Google Scholar] [CrossRef]
- Chen, S.; Du, X.; Zhao, W.; Guo, P.; Chen, H.; Jiang, Y.; Wu, H. Olive Oil Classification with Laser-Induced Fluorescence (LIF) Spectra Using 1-Dimensional Convolutional Neural Network and Dual Convolution Structure Model. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121418. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Y.; Li, X.; Kong, D.; Guo, M. Fast Dentification of Overlapping Fluorescence Spectra of Oil Species Based on LDA and Two-Dimensional Convolutional Neural Network. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 324, 124979. [Google Scholar] [CrossRef]
- Gjelsvik, E.L.; Fossen, M.; Tøndel, K. Current Overview and Way Forward for the Use of Machine Learning in the Field of Petroleum Gas Hydrates. Fuel 2023, 334, 126696. [Google Scholar] [CrossRef]
- Li, Y.; Jia, Y.; Cai, X.; Xie, M.; Zhang, Z. Correction to: Oil Pollutant Identification Based on Excitation-emission Matrix of UV-induced Fluorescence and Deep Convolutional Neural Network. Environ. Sci. Pollut. Res. 2022, 29, 89806. [Google Scholar] [CrossRef] [PubMed]
- Raljević, D.; Parlov Vuković, J.; Smrečki, V.; Marinić Pajc, L.; Novak, P.; Hrenar, T.; Jednačak, T.; Konjević, L.; Pinević, B.; Gašparac, T. Machine Learning Approach for Predicting Crude Oil Stability Based on NMR Spectroscopy. Fuel 2021, 305, 121561. [Google Scholar] [CrossRef]
- Li, K.; Yu, H.; Xu, Y.; Luo, X. Detection of Marine Oil Spills Based on HOG Feature and SVM Classifier. J. Sens. 2022, 2022, 3296495. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, Y.; Wang, Z.; Wei, S.; Zhang, X.; Zhang, T.; Song, X.; Zou, Y.; Wang, J.; Chen, F.; et al. A Novel Deep Learning Model for Spectral Analysis: Lightweight ResNet-CNN with Adaptive Feature Compression for Oil Spill Type Identification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 329, 125626. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, B.; Song, X.; Kang, Q.; Ye, X.; Zhang, B. A Data-Driven Binary-Classification Framework for Oil Fingerprinting Analysis. Environ. Res. 2021, 201, 111454. [Google Scholar] [CrossRef]
- Ekpe, O.D.; Choo, G.; Kang, J.-K.; Yun, S.-T.; Oh, J.-E. Identification of Organic Chemical Indicators for Tracking Pollution Sources in Groundwater by Machine Learning from GC-HRMS-Based Suspect and Non-Target Screening Data. Water Res. 2024, 252, 121130. [Google Scholar] [CrossRef]
- Xie, M.; Xie, L.; Li, Y.; Han, B. Oil Species Identification Based on Fluorescence Excitation-Emission Matrix and Transformer-Based Deep Learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123059. [Google Scholar] [CrossRef]
- Chung, S.; Loh, A.; Jennings, C.M.; Sosnowski, K.; Ha, S.Y.; Yim, U.H.; Yoon, J.-Y. Capillary Flow Velocity Profile Analysis on Paper-Based Microfluidic Chips for Screening Oil Types Using Machine Learning. J. Hazard. Mater. 2023, 447, 130806. [Google Scholar] [CrossRef]
- Sosnowski, K.; Loh, A.; Zubler, A.V.; Shir, H.; Ha, S.Y.; Yim, U.H.; Yoon, J.-Y. Machine Learning Techniques for Chemical and Type Analysis of Ocean Oil Samples via Handheld Spectrophotometer Device. Biosens. Bioelectron. X 2022, 10, 100128. [Google Scholar] [CrossRef]
- Bills, M.V.; Loh, A.; Sosnowski, K.; Nguyen, B.T.; Ha, S.Y.; Yim, U.H.; Yoon, J.-Y. Handheld UV Fluorescence Spectrophotometer Device for the Classification and Analysis of Petroleum Oil Samples. Biosens. Bioelectron. 2020, 159, 112193. [Google Scholar] [CrossRef]
- Loh, A.; Ha, S.Y.; Kim, D.; Lee, J.; Baek, K.; Yim, U.H. Development of a Portable Oil Type Classifier Using Laser-Induced Fluorescence Spectrometer Coupled with Chemometrics. J. Hazard. Mater. 2021, 416, 125723. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Yu, X.; Zheng, X. Assessing Response Capabilities for Responding to Ship-Related Oil Spills in the Chinese Bohai Sea. Int. J. Disaster Risk Reduct. 2018, 28, 251–257. [Google Scholar] [CrossRef]
- Kim, E.-S.; An, J.-G.; Kim, G.-B.; Shim, W.-J.; Joo, C.-K.; Kim, M.-K. Identification of Major Crude Oils Imported into Korea using Molecular and Stable Carbon Isotopic Compositions. J. Korean Soc. Mar. Environ. Energy 2012, 15, 247–256. [Google Scholar] [CrossRef]
- Hong, S.; Yoon, S.J.; Kim, T.; Ryu, J.; Kang, S.-G.; Khim, J.S. Response to Oiled Wildlife in the Management and Evaluation of Marine Oil Spills in South Korea: A Review. Reg. Stud. Mar. Sci. 2020, 40, 101542. [Google Scholar] [CrossRef]
- Lee, M.; Jung, J.-Y. Risk Assessment and National Measure Plan for Oil and HNS Spill Accidents near Korea. Mar. Pollut. Bull. 2013, 73, 339–344. [Google Scholar] [CrossRef]
- South Korea Crude Oil Imports by Type. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=318&tblId=TX_31801_A009&conn_path=I2 (accessed on 14 February 2024).
- Choe, Y.; Kim, H.; Huh, C. Estimation of Chemical Dispersion Amount Considering the Dosage of Dispersant and Change of Oil Properties by Weathering. J. Korean Soc. Mar. Environ. Energy 2018, 21, 260–269. [Google Scholar] [CrossRef]
- Hazrat, M.A.; Rasul, M.G.; Khan, M.M.K. Lubricity Improvement of the Ultra-Low Sulfur Diesel Fuel with the Biodiesel. Energy Procedia 2015, 75, 111–117. [Google Scholar] [CrossRef]
- Stanislaus, A.; Marafi, A.; Rana, M.S. Recent Advances in the Science and Technology of Ultra Low Sulfur Diesel (ULSD) Production. Catal. Today 2010, 153, 1–68. [Google Scholar] [CrossRef]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Early Identification of Oil Spills in Satellite Images Using Deep CNNs. In MultiMedia Modeling; Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11295, pp. 424–435. ISBN 978-3-030-05709-1. [Google Scholar]
- Hole, L.R.; Dagestad, K.-F.; Röhrs, J.; Wettre, C.; Kourafalou, V.H.; Androulidakis, Y.; Kang, H.; Le Hénaff, M.; Garcia-Pineda, O. The DeepWater Horizon Oil Slick: Simulations of River Front Effects and Oil Droplet Size Distribution. J. Mar. Sci. Eng. 2019, 7, 329. [Google Scholar] [CrossRef]
- Röhrs, J.; Dagestad, K.-F.; Asbjørnsen, H.; Nordam, T.; Skancke, J.; Jones, C.E.; Brekke, C. The Effect of Vertical Mixing on the Horizontal Drift of Oil Spills. Ocean. Sci. 2018, 14, 1581–1601. [Google Scholar] [CrossRef]
- Beegle-Krause, C.J. GNOME: NOAA’s Next-Generation Spill Trajectory Model. In Proceedings of the Oceans ’99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings (IEEE Cat. No.99CH37008), Seattle, WA, USA, 13–16 September 1999; Volume 3, pp. 1262–1266. [Google Scholar]
- Lehr, W.; Jones, R.; Evans, M.; Simecek-Beatty, D.; Overstreet, R. Revisions of the ADIOS Oil Spill Model. Environ. Model. Softw. 2002, 17, 189–197. [Google Scholar] [CrossRef]
- Keramea, P.; Spanoudaki, K.; Zodiatis, G.; Gikas, G.; Sylaios, G. Oil Spill Modeling: A Critical Review on Current Trends, Perspectives, and Challenges. J. Mar. Sci. Eng. 2021, 9, 181. [Google Scholar] [CrossRef]
- Zhong, X.; Li, P.; Lin, X.; Zhao, Z.; He, Q.; Niu, H.; Yang, J. Diluted Bitumen: Physicochemical Properties, Weathering Processes, Emergency Response, and Recovery. Front. Environ. Sci. 2022, 10, 910365. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Shabtai, A.; Moskovitch, R.; Elovici, Y.; Glezer, C. Detection of Malicious Code by Applying Machine Learning Classifiers on Static Features: A State-of-the-Art Survey. Inf. Secur. Tech. Rep. 2009, 14, 16–29. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, Y.; Cui, Z.; Yu, D.; Zheng, L.; Liu, P.; Lv, Z. Periodically Spilled-Oil Input as a Trigger to Stimulate the Development of Hydrocarbon-Degrading Consortia in a Beach Ecosystem. Sci. Rep. 2017, 7, 12446. [Google Scholar] [CrossRef]
- Charbuty, B.; Abdulazeez, A. Classification Based on Decision Tree Algorithm for Machine Learning. J. Appl. Sci. Technol. Trends 2021, 2, 20–28. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests—Random Features; Technical Report for University of California: Berkeley, CA, USA, 1999. [Google Scholar]
- Loh, W. Classification and Regression Trees. WIREs Data Min Knowl Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y. Comparison of Decision Tree Methods for Finding Active Objects. Adv. Space Res. 2008, 41, 1955–1959. [Google Scholar] [CrossRef]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Alfian, G.; Syafrudin, M.; Fahrurrozi, I.; Fitriyani, N.L.; Atmaji, F.T.D.; Widodo, T.; Bahiyah, N.; Benes, F.; Rhee, J. Predicting Breast Cancer from Risk Factors Using SVM and Extra-Trees-Based Feature Selection Method. Computers 2022, 11, 136. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Yi, C.D. Investment, Export, and Exchange Rate on Prediction of Employment with Decision Tree, Random Forest, and Gradient Boosting Machine Learning Models. Korea Trade Rev. 2021, 46, 281–299. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Proces. Syst. 2017, 3149–3157. [Google Scholar]
- Hossain, S.M.M.; Deb, K. Plant Leaf Disease Recognition Using Histogram Based Gradient Boosting Classifier. In Intelligent Computing and Optimization; Vasant, P., Zelinka, I., Weber, G.-W., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2021; Volume 1324, pp. 530–545. ISBN 978-3-030-68153-1. [Google Scholar]
- Hinz, T.; Navarro-Guerrero, N.; Magg, S.; Wermter, S. Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks. Int. J. Comp. Intel. Appl. 2018, 17, 1850008. [Google Scholar] [CrossRef]
- Qian, D. Analysis of the Hyperparameter Selection in Machine Learning. Appl. Comput. Eng. 2024, 104, 122–128. [Google Scholar] [CrossRef]
- Van Rijn, J.N.; Hutter, F. Hyperparameter Importance Across Datasets. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19 July 2018; pp. 2367–2376. [Google Scholar]
- Probst, P.; Wright, M.N.; Boulesteix, A. Hyperparameters and Tuning Strategies for Random Forest. WIREs Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Hoque, K.E.; Aljamaan, H. Impact of Hyperparameter Tuning on Machine Learning Models in Stock Price Forecasting. IEEE Access 2021, 9, 163815–163830. [Google Scholar] [CrossRef]
- Louche, U.; Ralaivola, L. Unconfused Ultraconservative Multiclass Algorithms. Mach. Learn. 2015, 99, 327–351. [Google Scholar] [CrossRef]
- Kurniasari, D.; Warsono, W.; Usman, M.; Lumbanraja, F.R.; Wamiliana, W. LSTM-CNN Hybrid Model Performance Improvement with BioWordVec for Biomedical Report Big Data Classification. Sci. Technol. Indones. 2024, 9, 273–283. [Google Scholar] [CrossRef]
- Markoulidakis, I.; Rallis, I.; Georgoulas, I.; Kopsiaftis, G.; Doulamis, A.; Doulamis, N. A Machine Learning Based Classification Method for Customer Experience Survey Analysis. Technologies 2020, 8, 76. [Google Scholar] [CrossRef]
- Ho, M.-C.; Shen, H.-A.; Chang, Y.-P.E.; Weng, J.-C. A CNN-Based Autoencoder and Machine Learning Model for Identifying Betel-Quid Chewers Using Functional MRI Features. Brain Sci. 2021, 11, 809. [Google Scholar] [CrossRef] [PubMed]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation Importance: A Corrected Feature Importance Measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Wu, Q.; Nasoz, F.; Jung, J.; Bhattarai, B.; Han, M.V. Machine Learning Approaches for Fracture Risk Assessment: A Comparative Analysis of Genomic and Phenotypic Data in 5130 Older Men. Calcif. Tissue Int. 2020, 107, 353–361. [Google Scholar] [CrossRef]
Oil | API Gravity |
---|---|
Maya (MA) | 21.3 |
Basrah Heavy (BH) | 24.7 |
Arabian Medium (AM) | 29.5 |
Iranian Heavy (IH) | 30.0 |
Kuwait (KU) | 30.6 |
Arabian Light (AL) | 32.2 |
Hout (HO) | 32.4 |
Basrah Light Mobil Oil Australia (BL) | 34.2 |
West Texas Intermediate (WTI) | 36.4 |
Arabian Extra Light Aramco (AELA) | 37.0 |
Ultra-low Sulfur Diesel (ULSD) | 38.0 |
Murban Shell Oil (MSO) | 40.5 |
Algorithm | N_Estimators | Max_Depth | Min_Samples_Split | Min_Samples_Leaf | Learning_Rate |
---|---|---|---|---|---|
DT | 10–1000 | None, 1–30 | 2–14 | 1–10 | NaN |
RF | 1–500 | None, 1–7 | 2–12 | 1–5 | NaN |
ET | 1–1000 | None, 1–28 | 2–14 | 1–5 | NaN |
GB | 1–700 | None, 1–20 | 2–12 | 1–5 | 0.01–0.3 |
HGB | 1–400 | None, 1–28 | NaN | 1–5 | 0.01–0.3 |
Algorithm | N_Estimators | Max_Depth | Min_Samples_Split | Min_Samples_Leaf | Learning_Rate |
---|---|---|---|---|---|
DT | 100 | None | 2 | 1 | NaN |
RF | 100 | None | 2 | 1 | NaN |
ET | 100 | None | 2 | 1 | NaN |
GB | 400 | None | 2 | 1 | 0.2 |
HGB | 100 | None | 2 | 1 | 0.1 |
Metric | Formula |
---|---|
Accuracy | |
Precision | |
Sensitivity | |
F1-score |
Model | Accuracy (%) | Precision (%) | Sensitivity (%) | F1-Score (%) |
---|---|---|---|---|
DT | 83.41 | 83.60 | 83.44 | 83.50 |
RF | 86.40 | 86.69 | 86.41 | 86.48 |
ET | 88.55 | 88.70 | 88.56 | 88.59 |
GB | 85.45 | 85.62 | 85.49 | 85.49 |
HGB | 88.41 | 88.55 | 88.39 | 88.43 |
Model | DT | RF | ET | GB | HGB |
---|---|---|---|---|---|
12 oils | 28.46 | 27.97 | 24.97 | 27.59 | 24.34 |
10 oils | 28.17 | 24.41 | 21.08 | 25.16 | 21.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-I.; Huh, C.; Kim, C.-K.; Cho, M.-I.; Choi, H.-J. Feasibility, Advantages, and Limitations of Machine Learning for Identifying Spilled Oil in Offshore Conditions. J. Mar. Sci. Eng. 2025, 13, 793. https://doi.org/10.3390/jmse13040793
Kang S-I, Huh C, Kim C-K, Cho M-I, Choi H-J. Feasibility, Advantages, and Limitations of Machine Learning for Identifying Spilled Oil in Offshore Conditions. Journal of Marine Science and Engineering. 2025; 13(4):793. https://doi.org/10.3390/jmse13040793
Chicago/Turabian StyleKang, Seong-Il, Cheol Huh, Choong-Ki Kim, Meang-Ik Cho, and Hyuek-Jin Choi. 2025. "Feasibility, Advantages, and Limitations of Machine Learning for Identifying Spilled Oil in Offshore Conditions" Journal of Marine Science and Engineering 13, no. 4: 793. https://doi.org/10.3390/jmse13040793
APA StyleKang, S.-I., Huh, C., Kim, C.-K., Cho, M.-I., & Choi, H.-J. (2025). Feasibility, Advantages, and Limitations of Machine Learning for Identifying Spilled Oil in Offshore Conditions. Journal of Marine Science and Engineering, 13(4), 793. https://doi.org/10.3390/jmse13040793