Fuzzy Reinforcement Learning Disturbance Cancellation Optimized Course Tracking Control for USV Autopilot Under Actuator Constraint
Abstract
1. Introduction
- Composite Disturbance Cancellation with RL Optimization. This study presents a composite disturbance cancellation optimized autopilot control scheme by integrating an FLS with a finite-time disturbance estimator and incorporating this coupled design into an RL framework. The proposed strategy not only achieves precise disturbance rejection but also minimizes performance indices, thereby enabling potential energy consumption reduction for USVs.
- RL-Optimized Control with Actuator Constraint. In USV control systems, actuator constraints (e.g., rudder angle limits) pose critical challenges for maintaining both control precision and system safety. This study proposes the RL framework that integrates the tanh function to address actuator saturation issues, complemented by an auxiliary system for error surface modification.
2. Problem Formation and Preliminaries
2.1. Problem Formulation
2.2. Fuzzy Logic Systems (FLSs)
3. Rl-Composite Disturbance Cancellation Optimized Tracking Control Design
3.1. Construction of Finite-Time Disturbance Observer (FTDO)
3.2. Composite Disturbance Cancellation Control Design
3.3. Fuzzy RL Optimized Compensator Design
4. Simulation Results
4.1. Comparisons with Traditional PID Controller
4.2. Comparisons with Traditional NN Adaptive Control with Input Constraints [34]
4.3. Comparisons with RL Control with Traditional DO [30]
4.4. Extended Simulation on 3-DOF USV
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, Z.; Wang, J.; Wang, D.; Han, Q. An Overview of Recent Advances in Coordinated Control of Multiple Autonomous Surface Vehicles. IEEE Trans. Ind. Inform. 2021, 17, 732–745. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, C.; Fang, H.; Li, H. Advanced control in marine mechatronic systems: A survey. IEEE/ASME Trans. Mechatron. 2017, 22, 1121–1131. [Google Scholar] [CrossRef]
- Gao, X.; Li, T. Dynamic Positioning Control for Marine Crafts: A Survey and Recent Advances. J. Mar. Sci. Eng. 2024, 12, 362. [Google Scholar] [CrossRef]
- Azzeri, M.; Adnan, F.; Zain, M.M. Review of course keeping control system for unmanned surface vehicle. J. Teknol. Sci. Eng. 2015, 74, 1–20. [Google Scholar] [CrossRef]
- Ning, J.; Wang, Y.; Liu, L.; Li, T. Disturbance observer based adaptive heading control for unmanned marine vehicles with event-triggered and input quantization. Int. J. Robust Nonlinear Control 2024, 34, 11469–11486. [Google Scholar] [CrossRef]
- Gao, X.; Long, Y.; Li, T.; Hu, X.; Chen, C.P.; Sun, F. Optimal Fuzzy Output Feedback Control for Dynamic Positioning of Vessels With Finite-Time Disturbance Rejection Under Thruster Saturations. IEEE Trans. Fuzzy Syst. 2023, 31, 3447–3458. [Google Scholar] [CrossRef]
- Yue, Y.; Ning, J.; Li, T.; Liu, L. Adaptive neural network course tracking control of USV with input quantisation and output constraints. Int. J. Syst. Sci. 2025, 56, 2674–2688. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Li, T. Distributed Formation Maneuvering Quantized Control of Under-Actuated Unmanned Surface Vehicles with Collision and Velocity Constraints. J. Mar. Sci. Eng. 2024, 12, 848. [Google Scholar] [CrossRef]
- Liu, W.; Ye, H.; Yang, X. Model-Free Adaptive Sliding Mode Control Method for Unmanned Surface Vehicle Course Control. J. Mar. Sci. Eng. 2023, 11, 1904. [Google Scholar] [CrossRef]
- Lyu, G.; Peng, Z.; Wang, D.; Wang, J. Safety-certified Receding-horizon Motion Planning and Containment Control of Autonomous Surface Vehicles via Neurodynamic Optimization. IEEE Trans. Intell. Veh. 2024, 1–13. [Google Scholar] [CrossRef]
- Minorsky, N. Directional stability of automatically steered bodies. J. Am. Soc. Nav. Eng. 1922, 34, 280–309. [Google Scholar] [CrossRef]
- Fossen, T.I.; Grovlen, A. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. IEEE Trans. Control Syst. Technol. 1998, 6, 121–128. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, M.; Hu, Y.; Zhu, G. Error-driven-based adaptive nonlinear feedback control of course-keeping for ships. J. Mar. Sci. Technol. 2021, 26, 357–367. [Google Scholar] [CrossRef]
- González-Prieto, J.A.; Pérez-Collazo, C.; Singh, Y. Adaptive integral sliding mode based course keeping control of unmanned surface vehicle. J. Mar. Sci. Eng. 2022, 10, 68. [Google Scholar] [CrossRef]
- Ning, J.; Wang, Y.; Chen, C.L.P.; Li, T. Neural Network Observer Based Adaptive Trajectory Tracking Control Strategy of Unmanned Surface Vehicle With Event-Triggered Mechanisms and Signal Quantization. IEEE Trans. Emerg. Top. Comput. Intell. 2025, 9, 3136–3146. [Google Scholar] [CrossRef]
- Chen, B.; Hu, J.; Zhao, Y.; Ghosh, B.K. Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach. Neurocomputing 2022, 481, 322–332. [Google Scholar] [CrossRef]
- Vu, M.T.; Hsia, K.H.; El-Sousy, F.F.M.; Rojsiraphisal, T.; Rahmani, R.; Mobayen, S. Adaptive Fuzzy Control of a Cable-Driven Parallel Robot. Mathematics 2022, 10, 3826. [Google Scholar] [CrossRef]
- Lv, J.; Ju, X.; Wang, C. Neural network prescribed-time observer-based output-feedback control for uncertain pure-feedback nonlinear systems. Expert Syst. Appl. 2025, 264, 125813. [Google Scholar] [CrossRef]
- Yang, D.; Hu, X.; Liu, W.; Guo, C. Finite-time control design for course tracking of disturbed ships subject to input saturation. Int. J. Control 2022, 95, 1409–1418. [Google Scholar] [CrossRef]
- Mu, D.; Wang, G.; Fan, Y.; Qiu, B.; Sun, X. Adaptive course control based on trajectory linearization control for unmanned surface vehicle with unmodeled dynamics and input saturation. Neurocomputing 2019, 330, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.; Li, J.; Ma, F.; Zhang, Z.; Brunauer, G.; Steyskal, F. Fault estimation and H∞ fuzzy active fault-tolerant control design for ship steering autopilot subject to actuator and sensor faults. IEEE Sens. J. 2023, 23, 28110–28119. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Hao, L.; Li, T.; Chen, C.L.P. Integral Sliding Mode Output Feedback Control for Unmanned Marine Vehicles Using T–S Fuzzy Model with Unknown Premise Variables and Actuator Faults. J. Mar. Sci. Eng. 2024, 12, 920. [Google Scholar] [CrossRef]
- Zhu, L.; Li, T. Observer-based autopilot heading finite-time control design for intelligent ship with prescribed performance. J. Mar. Sci. Eng. 2021, 9, 828. [Google Scholar] [CrossRef]
- Guo, L.; Wen, X.Y. Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems. Trans. Inst. Meas. Control 2011, 33, 942–956. [Google Scholar] [CrossRef]
- Werbos, P. Advanced forecasting methods for global crisis warning and models of intelligence. In General System Yearbook; Society for General Systems Research: Washington, DC, USA, 1977; pp. 25–38. [Google Scholar]
- Kamalapurkar, R.; Andrews, L.; Walters, P.; Dixon, W.E. Model-based reinforcement learning for infinite horizon approximate optimal tracking. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 753–758. [Google Scholar] [CrossRef]
- Yuan, L.; Li, T.; Tong, S.; Xiao, Y.; Shan, Q. Broad Learning System Approximation-Based Adaptive Optimal Control for Unknown Discrete-Time Nonlinear Systems. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 5028–5038. [Google Scholar] [CrossRef]
- Vu, M.T.; Nguyen, V.T.; Do, Q.T.; Youn, W.; Nguyen, T.H. Robust non-integer predictive control for wind turbine pitch angle regulation in full load regions using deep on-policy learning. Eng. Appl. Artif. Intell. 2025, 156, 111156. [Google Scholar] [CrossRef]
- Liu, S.; Zuo, Y.; Li, T.; Wang, H.; Gao, X.; Xiao, Y. Adaptive Composite Fixed-Time RL-Optimized Control for Nonlinear Systems and Its Application to Intelligent Ship Autopilot. IEEE Trans. Artif. Intell. 2025, 6, 66–78. [Google Scholar] [CrossRef]
- Yuan, L.E.; Xiao, Y.; Li, T.; Zhou, D. Output Feedback Adaptive Optimal Control of Multiple Unmanned Marine Vehicles with Unknown External Disturbance. J. Mar. Sci. Eng. 2024, 12, 1697. [Google Scholar] [CrossRef]
- Zwierzewicz, Z.; Dorobczyński, L.; Jaszczak, S. Designing an optimal ship course-keeping system for an unknown object model via adaptive dynamic programming approach. Procedia Comput. Sci. 2023, 225, 4667–4674. [Google Scholar] [CrossRef]
- Bai, X.; Yi, J.; Zhao, D. Approximate Dynamic Programming for Ship Course Control. In Proceedings of the Advances in Neural Networks–ISNN, Nanjing, China, 3–7 June 2007; pp. 349–357. [Google Scholar]
- Hu, X.; Long, Y.; Li, T.; Chen, C.L.P. Adaptive Fuzzy Backstepping Asymptotic Disturbance Rejection of Multiagent Systems With Unknown Model Dynamics. IEEE Trans. Fuzzy Syst. 2022, 30, 4775–4787. [Google Scholar] [CrossRef]
- Li, J.; Li, T.; Fan, Z.; Bu, R.; Li, Q.; Hu, J. Robust adaptive backstepping design for course-keeping control of ship with parameter uncertainty and input saturation. In Proceedings of the 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR), Dalian, China, 14–16 October 2011; pp. 63–67. [Google Scholar]
- Li, Y.; Dong, S.; Li, K. Fixed-Time Command Filter Fuzzy Adaptive Formation Control for Nonholonomic Multirobot Systems With Unknown Dead-Zones. IEEE Trans. Intell. Transp. Syst. 2024, 25, 17305–17316. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, Q.; Ding, S.; Han, S.; Wang, A. A machine-learning-based method for ship propulsion power prediction in ice. J. Mar. Sci. Eng. 2023, 11, 1381. [Google Scholar] [CrossRef]
- Zhang, J.; Ning, J.; Tong, S. Adaptive Fuzzy Secure Collision-Free Formation Control for Nonlinear MASs With DoS Attacks. IEEE Trans. Syst. Man Cybern. Syst. 2025, 55, 5705–5716. [Google Scholar] [CrossRef]
- Gong, C.; Su, Y.; Zhu, Q.; Zhang, D.; Hu, X. Finite-time dynamic positioning control design for surface vessels with external disturbances, input saturation and error constraints. Ocean Eng. 2023, 276, 114259. [Google Scholar] [CrossRef]
- Tong, S.; Sun, K.; Sui, S. Observer-Based Adaptive Fuzzy Decentralized Optimal Control Design for Strict-Feedback Nonlinear Large-Scale Systems. IEEE Trans. Fuzzy Syst. 2018, 26, 569–584. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, J. Adaptive fuzzy robust tracking controller design via small gain approach and its application. IEEE Trans. Fuzzy Syst. 2003, 11, 783–795. [Google Scholar] [CrossRef]
- Fossen, T.I. Marine control systems–guidance. Navigation, and control of ships, rigs and underwater vehicles. In Marine Cybernetics; Springer: Trondheim, Norway, 2002. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Hu, X.; Yang, A. Fuzzy Reinforcement Learning Disturbance Cancellation Optimized Course Tracking Control for USV Autopilot Under Actuator Constraint. J. Mar. Sci. Eng. 2025, 13, 1429. https://doi.org/10.3390/jmse13081429
Gao X, Hu X, Yang A. Fuzzy Reinforcement Learning Disturbance Cancellation Optimized Course Tracking Control for USV Autopilot Under Actuator Constraint. Journal of Marine Science and Engineering. 2025; 13(8):1429. https://doi.org/10.3390/jmse13081429
Chicago/Turabian StyleGao, Xiaoyang, Xin Hu, and Ang Yang. 2025. "Fuzzy Reinforcement Learning Disturbance Cancellation Optimized Course Tracking Control for USV Autopilot Under Actuator Constraint" Journal of Marine Science and Engineering 13, no. 8: 1429. https://doi.org/10.3390/jmse13081429
APA StyleGao, X., Hu, X., & Yang, A. (2025). Fuzzy Reinforcement Learning Disturbance Cancellation Optimized Course Tracking Control for USV Autopilot Under Actuator Constraint. Journal of Marine Science and Engineering, 13(8), 1429. https://doi.org/10.3390/jmse13081429