Compressive Sensing Convolution Improves Long Short-Term Memory for Ocean Wave Spatiotemporal Prediction
Abstract
1. Introduction
2. Methods
2.1. Statistical Assessment
2.1.1. Kernel Density Estimation
2.1.2. Kullback–Leibler Divergence
2.2. Long Short-Term Memory
2.3. Compressive Sensing Convolution LSTM
2.3.1. Compressed Sensing
2.3.2. Objective Optimization Function
2.3.3. Design of Compressive Sensing Convolution
2.4. Error Metrics
3. Data Analysis and Theory
3.1. Study Area
3.2. KDE and KL Divergence Under CSC
3.3. Preservation of Mutual Information Under CSC
3.3.1. Information Theory
3.3.2. Differential Amplification Effect
3.3.3. Amplification Effect Contributes to CSCL Accuracy
3.4. Model Parameter Setting
4. Results and Discussion
4.1. SWH Prediction Results
4.2. MWP Prediction Results
4.3. Discussion and Application
4.3.1. Comparison with Advanced Models
4.3.2. Application in Wave Energy Prediction
4.3.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, P.; Wu, D.; Yang, Y.; Tsolakis, A. Discretization Modeling with Pseudo Real-Time Waves Input of the Hybrid Wave-Tidal Energy Converter based on Non-Linear Motions Rectification and Coupling Device. Energy 2025, 323, 135615. [Google Scholar] [CrossRef]
- Alkhabbaz, A.; Hamzah, H.; Hamdoon, O.M.; Yang, H.-S.; Easa, H.; Lee, Y.-H. A unique design of a hybrid wave energy converter. Renew. Energy 2025, 245, 122814. [Google Scholar] [CrossRef]
- Fanelli, E.; Masia, P.; Premici, A.; Volpato, E.; Da Ros, Z.; Aguzzi, J.; Francescangeli, M.; Dell’Anno, A.; Danovaro, R.; Cimino, R.; et al. The re-use of offshore platforms as ecological observatories. Mar. Pollut. Bull. 2024, 209, 117262. [Google Scholar] [CrossRef]
- Cui, A.; Ma, Y.; Jiang, Y.; Li, S.; Zhang, J.; Wang, R. Synchronous inversion of bathymetry and wave height using wave textures and sun glint signals. Ocean Eng. 2025, 328, 121042. [Google Scholar] [CrossRef]
- Li, C.; Xu, H.; Feng, X.; Sun, Q. Enhanced intelligent reconstruction study on wind wave height field in the South China Sea. J. Ocean Eng. Sci. 2025. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Pei, Y.; Qu, L. Disentangled Seasonal-Trend representation of improved CEEMD-GRU joint model with entropy-driven reconstruction to forecast significant wave height. Renew. Energy 2024, 226, 120345. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, B.-L.; Han, Q.-L.; Zhang, X.-M.; Zhang, J.; Xu, O. Sampled-data fuzzy modeling and control for offshore structures subject to parametric perturbations and wave loads. Ocean Eng. 2025, 326, 120908. [Google Scholar] [CrossRef]
- Liang, J.; Fu, Y.; Wang, Y.; Ou, J. Identification of equivalent wind and wave loads for monopile-supported offshore wind turbines in operating condition. Renew. Energy 2024, 237, 121525. [Google Scholar] [CrossRef]
- Song, Y.; Hong, X.; Zhang, Z.; Sun, T.; Cai, Y. Reliability analysis of floating offshore wind turbine considering multiple failure modes under extreme typhoon-wave condition. Ocean Eng. 2025, 323, 120564. [Google Scholar] [CrossRef]
- Vandenhove, M.; Castelle, B.; Nicolae Lerma, A.; Marieu, V.; Martins, K.; Mazeiraud, V. Field measurements of wave and flow dynamics along a high-energy meso-macrotidal coast adjacent to a large estuary mouth. Estuar. Coast. Shelf Sci. 2025, 317, 109205. [Google Scholar] [CrossRef]
- Fernández, L.; Calvino, C.; Dias, F. Sensitivity analysis of wind input parametrizations in the WAVEWATCH III spectral wave model using the ST6 source term package for Ireland. Appl. Ocean Res. 2021, 115, 102826. [Google Scholar] [CrossRef]
- Jiang, Y.; Rong, Z.; Li, P.; Qin, T.; Yu, X.; Chi, Y.; Gao, Z. Modeling waves over the Changjiang River Estuary using a high-resolution unstructured SWAN model. Ocean Model. 2022, 173, 102007. [Google Scholar] [CrossRef]
- Hoque, M.A.; Perrie, W.; Solomon, S.M. Application of SWAN model for storm generated wave simulation in the Canadian Beaufort Sea. J. Ocean Eng. Sci. 2020, 5, 19–34. [Google Scholar] [CrossRef]
- Shankar, C.G.; Cambazoglu, M.K.; Bernstein, D.N.; Hesser, T.J.; Wiggert, J.D. Sensitivity and impact of atmospheric forcings on hurricane wind wave modeling in the Gulf of Mexico using nested WAVEWATCH III. Appl. Ocean Res. 2025, 154, 104320. [Google Scholar] [CrossRef]
- Umesh, P.A.; Behera, M.R. Performance evaluation of input-dissipation parameterizations in WAVEWATCH III and comparison of wave hindcast with nested WAVEWATCH III-SWAN in the Indian Seas. Ocean Eng. 2020, 202, 106959. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Qu, L.; Zhang, J.; Teng, B. A hybrid VMD-LSTM/GRU model to predict non-stationary and irregular waves on the east coast of China. Ocean Eng. 2023, 276, 114136. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, Y.Q.; Gao, S.; Ren, P. Ocean Wave Height Series Prediction with Numerical Long Short-Term Memory. J. Mar. Sci. Eng. 2021, 9, 514. [Google Scholar] [CrossRef]
- Yang, E. Analogy to numerical solution of wave propagation in an inhomogeneous medium with gain or loss variations. Proc. IEEE 1981, 69, 1574–1575. [Google Scholar] [CrossRef]
- Holand, K.; Kalisch, H. Real-time ocean wave prediction in time domain with autoregression and echo state networks. Front. Mar. Sci. 2024, 11, 1486234. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Qu, L. Forecasting of Beijing PM2.5 with a hybrid ARIMA model based on integrated AIC and improved GS fixed-order methods and seasonal decomposition. Heliyon 2022, 8, e12239. [Google Scholar] [CrossRef] [PubMed]
- Alessio, S.; Longhetto, A.; Meixia, L. The Space and Time Features of Global SST Anomalies Studied by Complex Principal Component Analysis. Adv. Atmos. Sci. 1999, 16, 1–23. [Google Scholar] [CrossRef]
- Majidian, H.; Enshaei, H.; Howe, D. A Concise Account for Challenges of Machine Learning in Seakeeping. Procedia Comput. Sci. 2025, 253, 2849–2858. [Google Scholar] [CrossRef]
- Xia, Y.S.; Leung, H.; Chan, H. A prediction fusion method for reconstructing spatial temporal dynamics using support vector machines. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 2006, 53, 62–66. [Google Scholar] [CrossRef]
- Chang, Z.H.; Liu, C.S.; Jia, J.M. STA-GCN: Spatial-Temporal Self-Attention Graph Convolutional Networks for Traffic-Flow Prediction. Appl. Sci. 2023, 13, 6796. [Google Scholar] [CrossRef]
- Dai, K.; Li, X.T.; Ma, C.; Lu, S.Y.; Ye, Y.M.; Xian, D.; Tian, L.; Qin, D.Y. Learning Spatial-Temporal Consistency for Satellite Image Sequence Prediction. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 3303947. [Google Scholar] [CrossRef]
- Li, G.G.; Zhang, H.; Lyu, T.; Zhang, H.F. Regional significant wave height forecast in the East China Sea based on the Self-Attention ConvLSTM with SWAN model. Ocean Eng. 2024, 312, 119064. [Google Scholar] [CrossRef]
- Deo, M.C.; Sridhar Naidu, C. Real time wave forecasting using neural networks. Ocean Eng. 1998, 26, 191–203. [Google Scholar] [CrossRef]
- Makarynskyy, O.; Pires-Silva, A.A.; Makarynska, D.; Ventura-Soares, C. Artificial neural networks in wave predictions at the west coast of Portugal. Comput. Geosci. 2005, 31, 415–424. [Google Scholar] [CrossRef]
- Yao, J.; Wu, W.H. Wave height forecast method with multi-step training set extension LSTM neural network. Ocean Eng. 2022, 263, 112432. [Google Scholar] [CrossRef]
- Wang, M.; Ying, F.X. Point and interval prediction for significant wave height based on LSTM-GRU and KDE. Ocean Eng. 2023, 289, 116247. [Google Scholar] [CrossRef]
- Neelamani, S. Influence of Threshold Value on Peak over Threshold Method on the Predicted Extreme Significant Wave Heights in Kuwaiti Territorial Waters. J. Coast. Res. 2009, 564–568. [Google Scholar]
- Stephens, S.A.; Gorman, R.M. Extreme wave predictions around New Zealand from hindcast data. N. Z. J. Mar. Freshw. Res. 2006, 40, 399–411. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Zhang, J.; Teng, B. An Integrated Complete Ensemble Empirical Mode Decomposition with Adaptive Noise to Optimize LSTM for Significant Wave Height Forecasting. J. Mar. Sci. Eng. 2023, 11, 435. [Google Scholar] [CrossRef]
- Hisaki, Y. Wave hindcast in the North Pacific area considering the propagation of surface disturbances. Prog. Oceanogr. 2018, 165, 332–347. [Google Scholar] [CrossRef]
- Wei, C.C.; Cheng, J.Y. Nearshore two-step typhoon wind-wave prediction using deep recurrent neural networks. J. Hydroinformatics 2020, 22, 346–367. [Google Scholar] [CrossRef]
- Liu, W.C.; Huang, W.C. Hindcasting and predicting surge heights and waves on the Taiwan coast using a hybrid typhoon wind and tide-surge-wave coupled model. Ocean Eng. 2023, 276, 114208. [Google Scholar] [CrossRef]
- Ti, Z.; Kong, Y. Single-instant spatial wave height forecast using machine learning: An image-to-image translation approach based on generative adversarial networks. Appl. Ocean Res. 2024, 150, 104094. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, F.; Quan, X.; Wang, Y.; Shi, J.; Shen, C.; Zhang, C. Improving wave height prediction accuracy with deep learning. Ocean Model. 2024, 188, 102312. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, W.; Wang, D.; Lai, Z.; Ying, C.; Li, X.; Han, Y.; Wang, Z.; Dong, C. Spatiotemporal wave forecast with transformer-based network: A case study for the northwestern Pacific Ocean. Ocean Model. 2024, 188, 102323. [Google Scholar] [CrossRef]
- Wang, J.; Bethel, B.J.; Xie, W.; Dong, C. A hybrid model for significant wave height prediction based on an improved empirical wavelet transform decomposition and long-short term memory network. Ocean Model. 2024, 189, 102367. [Google Scholar] [CrossRef]
- Jörges, C.; Berkenbrink, C.; Gottschalk, H.; Stumpe, B. Spatial ocean wave height prediction with CNN mixed-data deep neural networks using random field simulated bathymetry. Ocean Eng. 2023, 271, 113699. [Google Scholar] [CrossRef]
- Yevnin, Y.; Chorev, S.; Dukan, I.; Toledo, Y. Short-term wave forecasts using gated recurrent unit model. Ocean Eng. 2023, 268, 113389. [Google Scholar] [CrossRef]
- Meng, F.; Xu, D.; Song, T. ATDNNS: An adaptive time–frequency decomposition neural network-based system for tropical cyclone wave height real-time forecasting. Future Gener. Comput. Syst. 2022, 133, 297–306. [Google Scholar] [CrossRef]
- Dixit, P.; Londhe, S.; Dandawate, Y. Removing prediction lag in wave height forecasting using Neuro—Wavelet modeling technique. Ocean Eng. 2015, 93, 74–83. [Google Scholar] [CrossRef]
- Ti, Z.; Song, Y.; Deng, X. Spatial-temporal wave height forecast using deep learning and public reanalysis dataset. Appl. Energy 2022, 326, 120027. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhao, Y.; Zhang, D.; Zhang, X. An effective deep learning model for spatial-temporal significant wave height prediction in the Atlantic hurricane area. Ocean Eng. 2025, 317, 120083. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, H.; Zhang, Z.; Zhang, C.; Zhou, W.; Pan, G.; Wang, W. Wave field predictions using a multi-layer perceptron and decision tree model based on physical principles: A case study at the Pearl River Estuary. Ocean Eng. 2023, 277, 114246. [Google Scholar] [CrossRef]
- Price, I.; Sanchez-Gonzalez, A.; Alet, F.; Andersson, T.R.; El-Kadi, A.; Masters, D.; Ewalds, T.; Stott, J.; Mohamed, S.; Battaglia, P.; et al. Probabilistic weather forecasting with machine learning. Nature 2025, 637, 84–90. [Google Scholar] [CrossRef]
- Krichen, M. Generative Adversarial Networks. In Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023; pp. 1–7. [Google Scholar]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. In Proceedings of the 34th International Conference on Neural Information Processing Systems, New Orleans, LA, USA, 6–12 December 2020; Curran Associates Inc.: Vancouver, BC, Canada, 2020; pp. 6840–6851. [Google Scholar]
- Wu, H.L.; Chung, W.Y. Sentiment-based masked language modeling for improving sentence-level valence-arousal prediction. Appl. Intell. 2022, 52, 16353–16369. [Google Scholar] [CrossRef]
- Choi, B.; Jang, D.; Ko, Y. MEM-KGC: Masked Entity Model for Knowledge Graph Completion With Pre-Trained Language Model. IEEE Access 2021, 9, 132025–132032. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Croxford, A.J.; Drinkwater, B.W. A hardware compressed sensing method for ultrasonic imaging. Sens. Actuators A Phys. 2025, 384, 116265. [Google Scholar] [CrossRef]
- Barnhill, D.; Yoshida, R.; Miura, K. Maximum inscribed and minimum enclosing tropical balls of tropical polytopes and applications to volume estimation and uniform sampling. Comput. Geom. 2025, 128, 102163. [Google Scholar] [CrossRef]
- Niu, Y.; Li, H.; Tang, Z.; Liu, L.; Long, H.; Yan, H.; Zhu, M.; Zhang, J. STP-KDE: A spatiotemporal trajectory protection and publishing method based on kernel density estimation. Comput. Electr. Eng. 2024, 117, 109328. [Google Scholar] [CrossRef]
- Rahad, M.; Shabab, R.; Ahammad, M.S.; Reza, M.M.; Karmaker, A.; Hossain, M.A. KL-FedDis: A federated learning approach with distribution information sharing using Kullback-Leibler divergence for non-IID data. Neurosci. Inform. 2025, 5, 100182. [Google Scholar] [CrossRef]
- Waqas, M.; Humphries, U.W. A critical review of RNN and LSTM variants in hydrological time series predictions. MethodsX 2024, 13, 102946. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.; Li, J.; Sun, Q.; Wang, H. NGCU: A New RNN Model for Time-Series Data Prediction. Big Data Res. 2022, 27, 100296. [Google Scholar] [CrossRef]
- Gao, B.; Xu, J.; Zhang, Z.; Liu, Y.; Chang, X. Marine diesel engine piston ring fault diagnosis based on LSTM and improved beluga whale optimization. Alex. Eng. J. 2024, 109, 213–228. [Google Scholar] [CrossRef]
- Candes, E.J.; Wakin, M.B. An Introduction To Compressive Sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Rao, S. Satisfying the restricted isometry property with the optimal number of rows and slightly less randomness. Inf. Process. Lett. 2025, 189, 106553. [Google Scholar] [CrossRef]
- Babu, S.; Aviyente, S.; Vaswani, N. Tensor Low Rank Column-Wise Compressive Sensing for Dynamic Imaging. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Liu, X.; Wang, Z.; Ji, H.; Gong, H. Application and comparison of several adaptive sampling algorithms in reduced order modeling. Heliyon 2024, 10, e34928. [Google Scholar] [CrossRef]
- Chen, J.; Song, P.; Zhao, C. Multi-scale self-supervised representation learning with temporal alignment for multi-rate time series modeling. Pattern Recognit. 2024, 145, 109943. [Google Scholar] [CrossRef]
- Miki, T.; Chang, C.-W.; Ke, P.-J.; Telschow, A.; Tsai, C.-H.; Ushio, M.; Hsieh, C.-h. How to quantify interaction strengths? A critical rethinking of the interaction Jacobian and evaluation methods for non-parametric inference in time series analysis. Phys. D Nonlinear Phenom. 2025, 476, 134613. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Qu, L. A novel machine learning-based artificial intelligence method for predicting the air pollution index PM2.5. J. Clean. Prod. 2024, 468, 143042. [Google Scholar] [CrossRef]
- Chisale, S.W.; Lee, H.S. Comprehensive onshore wind energy assessment in Malawi based on the WRF downscaling with ERA5 reanalysis data, optimal site selection, and energy production. Energy Convers. Manag. X 2024, 22, 100608. [Google Scholar] [CrossRef]
- Dalla Torre, D.; Di Marco, N.; Menapace, A.; Avesani, D.; Righetti, M.; Majone, B. Suitability of ERA5-Land reanalysis dataset for hydrological modelling in the Alpine region. J. Hydrol. Reg. Stud. 2024, 52, 101718. [Google Scholar] [CrossRef]
- Liaw, L.C.M.; Tan, S.C.; Goh, P.Y.; Lim, C.P. A histogram SMOTE-based sampling algorithm with incremental learning for imbalanced data classification. Inf. Sci. 2025, 686, 121193. [Google Scholar] [CrossRef]
- Ai, X.; Ni, G.; Zeng, T. A sharpening median filter for Cauchy noise with wavelet based regularization. J. Comput. Appl. Math. 2025, 467, 116625. [Google Scholar] [CrossRef]
- Łoś, M.; Służalec, T.; Paszyński, M.; Valseth, E. Stabilization of isogeometric finite element method with optimal test functions computed from L2 norm residual minimization. J. Comput. Appl. Math. 2025, 460, 116410. [Google Scholar] [CrossRef]
- Khan, Z.; Liu, H.; Shen, Y.; Zeng, X. Deep learning improved YOLOv8 algorithm: Real-time precise instance segmentation of crown region orchard canopies in natural environment. Comput. Electron. Agric. 2024, 224, 109168. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the International Conference on Computer Vision, Las Condes, Chile, 11–18 December 2015; pp. 1026–1034. [Google Scholar]
- Chauhan, D.; Yadav, A. An archive-based self-adaptive artificial electric field algorithm with orthogonal initialization for real-parameter optimization problems. Appl. Soft Comput. 2024, 150, 111109. [Google Scholar] [CrossRef]
- Lin, H.; Tang, J.; Wang, S.; Wang, S.; Dong, G. Deep learning downscaled high-resolution daily near surface meteorological datasets over East Asia. Sci. Data 2023, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Trebing, K.; Staǹczyk, T.; Mehrkanoon, S. SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture. Pattern Recognit. Lett. 2021, 145, 178–186. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, J.; Meng, J.; Wang, J. Exploitable wave energy assessment based on ERA-Interim reanalysis data—A case study in the East China Sea and the South China Sea. Acta Oceanol. Sin. 2015, 34, 143–155. [Google Scholar] [CrossRef]
Ref. | Model | Duration | Type | Dimensions |
---|---|---|---|---|
Ti and Kong [37] | Generative adversarial network | 3 h | Heuristic | Spatial (2D) |
Zhang, Luo, Quan, Wang, Shi, Shen and Zhang [38] | Convolutional long short-term memory | 3 h | Heuristic | Time (1D) |
Liu, Lu, Wang, Lai, Ying, Li, Han, Wang and Dong [39] | Earthformer | 1 h | Physics | Spatial (2D) |
Wang, Bethel, Xie and Dong [40] | Empirical wavelet transform–long short-term memory | 6 h | Heuristic | Time (1D) |
Jörges, Berken-brink, Gottschalk and Stumpe [41] | Convolutional neural network | 1 h | Physics | Spatial (2D) |
Yevnin, Chorev, Dukan and Tole-do [42] | Gated recurrent unit | 1 h | Heuristic | Spatial (2D) |
Meng, Xu and Song [43] | Adaptive time–frequency neural network | 1 h | Heuristic | Time (1D) |
Dixit, Londhe and Dandawate [44] | Neuro-wavelet modeling | 6 h | Heuristic | Time (1D) |
Zilong, Yubing and Xiaowei [45] | Convolutional long short-term memory | 3 h | Physics | Spatial (2D) |
Ouyang, Zhao, Zhang and Zhang [46] | Convolutional neural network | 1 h | Heuristic | Spatial (2D) |
Luo, Shi, Zhang, Zhang, Zhou, Pan and Wang [47] | Decision trees and multi-layer perceptron | 1 h | Physics | Spatial (2D) |
Name | Kernel | ||||||||
---|---|---|---|---|---|---|---|---|---|
1/2 | 1/3 | 1/4 | 1/5 | 1/6 | 1/7 | 1/8 | 1/9 | ||
Original | - | 0.00028 | 0.00096 | 0.00081 | 0.00063 | 0.02556 | 0.06913 | 0.10572 | 0.03696 |
Convolved1 | Average filter | 0.07854 | 0.14876 | 0.29312 | 0.47609 | 0.43306 | 1.06601 | 1.02536 | 1.25002 |
Convolved2 | Sharpening filter | 1.34010 | 4.49836 | 1.30898 | 3.54089 | 0.22995 | 2.66963 | 2.56190 | 3.47551 |
Convolved3 | Laplacian filter | 3.17143 | 3.78570 | 4.49095 | 6.55959 | 3.33293 | 6.22306 | 5.28888 | 6.71930 |
Convolved4 | Gaussian filter | 0.07820 | 0.14339 | 0.32122 | 0.53333 | 0.49635 | 1.13168 | 1.15413 | 2.09468 |
Metrics | Time | ConvLSTM | CSCL-5,1 | CSCL-24,1 | CSCL-5,4 | CSCL-8,4 | CSCL-12,4 | CSCL-24,4 | CSCL-5,7 |
---|---|---|---|---|---|---|---|---|---|
RMSE | 1 h | 0.1095 | 0.0326 | 0.0325 | 0.0291 | 0.0263 | 0.0282 | 0.0316 | 0.0274 |
3 h | 0.1726 | 0.0919 | 0.0844 | 0.0735 | 0.0683 | 0.0715 | 0.0762 | 0.0687 | |
6 h | 0.2531 | 0.1760 | 0.1701 | 0.1431 | 0.1352 | 0.1434 | 0.1515 | 0.1375 | |
12 h | 0.3892 | 0.3418 | 0.3283 | 0.2615 | 0.2593 | 0.2806 | 0.2919 | 0.2569 | |
18 h | 0.4878 | 0.4638 | 0.4528 | 0.3759 | 0.3756 | 0.3848 | 0.4105 | 0.3713 | |
24 h | 0.5754 | 0.5482 | 0.5436 | 0.4722 | 0.4706 | 0.4840 | 0.5251 | 0.4632 | |
MAE | 1 h | 0.0694 | 0.0180 | 0.0182 | 0.0150 | 0.0133 | 0.0163 | 0.0167 | 0.0146 |
3 h | 0.1136 | 0.0531 | 0.0503 | 0.0436 | 0.0402 | 0.0422 | 0.0445 | 0.0402 | |
6 h | 0.1706 | 0.1112 | 0.1025 | 0.0894 | 0.0856 | 0.0890 | 0.0937 | 0.0842 | |
12 h | 0.2638 | 0.2211 | 0.2044 | 0.1684 | 0.1643 | 0.1795 | 0.1864 | 0.1655 | |
18 h | 0.3294 | 0.3101 | 0.2915 | 0.2446 | 0.2418 | 0.2528 | 0.2617 | 0.2376 | |
24 h | 0.3931 | 0.3730 | 0.3612 | 0.2999 | 0.3184 | 0.3295 | 0.3408 | 0.3008 | |
R2 | 1 h | 0.9763 | 0.9976 | 0.9975 | 0.9981 | 0.9985 | 0.9984 | 0.9979 | 0.9985 |
3 h | 0.9431 | 0.9814 | 0.9845 | 0.9878 | 0.9897 | 0.9889 | 0.9879 | 0.9899 | |
6 h | 0.8810 | 0.9356 | 0.9412 | 0.9559 | 0.9613 | 0.9560 | 0.9528 | 0.9605 | |
12 h | 0.7254 | 0.7776 | 0.7976 | 0.8651 | 0.8683 | 0.8478 | 0.8355 | 0.8688 | |
18 h | 0.5782 | 0.6146 | 0.6302 | 0.7385 | 0.7378 | 0.7226 | 0.6928 | 0.7399 | |
24 h | 0.4190 | 0.4757 | 0.4837 | 0.6025 | 0.6013 | 0.5596 | 0.5029 | 0.6030 |
Metric | Time | CSCL-5,1 | CSCL-24,1 | CSCL-5,4 | CSCL-8,4 | CSCL-12,4 | CSCL-24,4 | CSCL-5,7 |
---|---|---|---|---|---|---|---|---|
Improvement in RMSE | 1 h | 70.2% | 70.3% | 73.4% | 76.0% | 74.2% | 71.1% | 75.0% |
3 h | 46.8% | 51.1% | 57.4% | 60.4% | 58.6% | 55.9% | 60.2% | |
6 h | 30.5% | 32.8% | 43.5% | 46.6% | 43.3% | 40.1% | 45.7% | |
12 h | 12.2% | 15.6% | 32.8% | 33.4% | 27.9% | 25.0% | 34.0% | |
18 h | 4.9% | 7.2% | 22.9% | 23.0% | 21.1% | 15.8% | 23.9% | |
24 h | 4.7% | 5.5% | 17.9% | 18.2% | 15.9% | 8.7% | 19.5% | |
Improvement in MAE | 1 h | 74.1% | 73.8% | 78.4% | 80.8% | 76.5% | 75.9% | 79.0% |
3 h | 53.3% | 55.7% | 61.6% | 64.6% | 62.9% | 60.8% | 64.6% | |
6 h | 34.8% | 39.9% | 47.6% | 49.8% | 47.8% | 45.1% | 50.6% | |
12 h | 16.2% | 22.5% | 36.2% | 37.7% | 32.0% | 29.3% | 37.3% | |
18 h | 5.9% | 11.5% | 25.7% | 26.6% | 23.3% | 20.6% | 27.9% | |
24 h | 5.1% | 8.1% | 23.7% | 19.0% | 16.2% | 13.3% | 23.5% | |
Improvement in R2 | 1 h | 2.1% | 2.1% | 2.2% | 2.2% | 2.2% | 2.2% | 2.2% |
3 h | 3.9% | 4.2% | 4.5% | 4.7% | 4.6% | 4.5% | 4.7% | |
6 h | 5.8% | 6.4% | 7.8% | 8.4% | 7.8% | 7.5% | 8.3% | |
12 h | 6.7% | 9.1% | 16.1% | 16.5% | 14.4% | 13.2% | 16.5% | |
18 h | 5.9% | 8.3% | 21.7% | 21.6% | 20.0% | 16.5% | 21.9% | |
24 h | 11.9% | 13.4% | 30.5% | 30.3% | 25.1% | 16.7% | 30.5% |
Metric | Time | ConvLSTM | CSCL-5,4 | Improvement |
---|---|---|---|---|
RMSE | 1 h | 0.2127 | 0.0536 | 74.8% |
3 h | 0.2776 | 0.1379 | 50.3% | |
6 h | 0.4045 | 0.2516 | 37.8% | |
12 h | 0.5878 | 0.4355 | 25.9% | |
18 h | 0.7127 | 0.5819 | 18.4% | |
24 h | 0.8013 | 0.6951 | 13.3% | |
MAE | 1 h | 0.1540 | 0.0276 | 82.1% |
3 h | 0.2039 | 0.0908 | 55.5% | |
6 h | 0.3039 | 0.1797 | 40.9% | |
12 h | 0.4488 | 0.3258 | 27.4% | |
18 h | 0.5482 | 0.4419 | 19.4% | |
24 h | 0.6159 | 0.5270 | 14.4% | |
R2 | 1 h | 0.9605 | 0.9975 | 3.7% |
3 h | 0.9346 | 0.9840 | 5.0% | |
6 h | 0.8644 | 0.9474 | 8.8% | |
12 h | 0.7146 | 0.8438 | 15.3% | |
18 h | 0.5805 | 0.7238 | 19.8% | |
24 h | 0.4742 | 0.6102 | 22.3% |
Metrics | Time | ConvLSTM | CSCL-5,4 | UNet | SmaAt-UNet |
---|---|---|---|---|---|
RMSE | 1 h | 0.1095 | 0.0291 | 0.0327 | 0.0308 |
3 h | 0.1726 | 0.0735 | 0.0793 | 0.0787 | |
6 h | 0.2531 | 0.1431 | 0.1509 | 0.1468 | |
12 h | 0.3892 | 0.2615 | 0.2827 | 0.2723 | |
18 h | 0.4878 | 0.3759 | 0.4183 | 0.3915 | |
24 h | 0.5754 | 0.4722 | 0.5109 | 0.4936 | |
MAE | 1 h | 0.0694 | 0.0150 | 0.0165 | 0.0154 |
3 h | 0.1136 | 0.0436 | 0.0471 | 0.0468 | |
6 h | 0.1706 | 0.0894 | 0.1009 | 0.0936 | |
12 h | 0.2638 | 0.1684 | 0.1846 | 0.1754 | |
18 h | 0.3294 | 0.2446 | 0.2763 | 0.2607 | |
24 h | 0.3931 | 0.2999 | 0.3280 | 0.3124 | |
R2 | 1 h | 0.9763 | 0.9981 | 0.9971 | 0.9974 |
3 h | 0.9431 | 0.9878 | 0.9857 | 0.9864 | |
6 h | 0.8810 | 0.9559 | 0.9573 | 0.9642 | |
12 h | 0.7254 | 0.8651 | 0.8462 | 0.8590 | |
18 h | 0.5782 | 0.7385 | 0.7056 | 0.7243 | |
24 h | 0.4190 | 0.6025 | 0.5583 | 0.5872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Kuang, Y.; Zhang, J.; Teng, B. Compressive Sensing Convolution Improves Long Short-Term Memory for Ocean Wave Spatiotemporal Prediction. J. Mar. Sci. Eng. 2025, 13, 1712. https://doi.org/10.3390/jmse13091712
Zhao L, Kuang Y, Zhang J, Teng B. Compressive Sensing Convolution Improves Long Short-Term Memory for Ocean Wave Spatiotemporal Prediction. Journal of Marine Science and Engineering. 2025; 13(9):1712. https://doi.org/10.3390/jmse13091712
Chicago/Turabian StyleZhao, Lingxiao, Yijia Kuang, Junsheng Zhang, and Bin Teng. 2025. "Compressive Sensing Convolution Improves Long Short-Term Memory for Ocean Wave Spatiotemporal Prediction" Journal of Marine Science and Engineering 13, no. 9: 1712. https://doi.org/10.3390/jmse13091712
APA StyleZhao, L., Kuang, Y., Zhang, J., & Teng, B. (2025). Compressive Sensing Convolution Improves Long Short-Term Memory for Ocean Wave Spatiotemporal Prediction. Journal of Marine Science and Engineering, 13(9), 1712. https://doi.org/10.3390/jmse13091712