Landsat-5 TM Imagery for Retrieving Historical Water Temperature Records in Small Inland Water Bodies and Coastal Waters of Lithuania (Northern Europe)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Validation
3. Results and Discussion
3.1. Validation
3.2. Mapping Historical WST with L-5 Satellite Imagery
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonansea, M.; Ferrero, S.; Ferral, A.; Ledesma, M.; German, A.; Carreño, J.; Rodriguez, C.; Pinotti, L. Assessing water surface temperature from Landsat imagery and its relationship with a nuclear power plant. Hydrol. Sci. J. 2021, 66, 50–58. [Google Scholar] [CrossRef]
- Lengyel, E.; Stenger-Kovács, C.; Boros, G.; Al-Imari, T.J.K.; Novák, Z.; Bernát, G. Anticipated Impacts of Climate Change on the Structure and Function of Phytobenthos in Freshwater Lakes. Environ. Res. 2023, 238, 117283. [Google Scholar] [CrossRef]
- von Schuckmann, K.; Moreira, L.; Cancet, M.; Gues, F.; Autret, E.; Baker, J.; Bricaud, C.; Bourdalle-Badie, R.; Castrillo, L.; Cheng, L.; et al. The State of the Global Ocean. State Planet 2024, 4-osr8, 1–30. [Google Scholar] [CrossRef]
- Varela, R.; de Castro, M.; Dias, J.M.; Gómez-Gesteira, M. Coastal Warming under Climate Change: Global, Faster and Heterogeneous. Sci. Total Environ. 2023, 886, 164029. [Google Scholar] [CrossRef] [PubMed]
- Zalewska, T.; Wilman, B.; Łapeta, B.; Marosz, M.; Biernacik, D.; Wochna, A.; Saniewski, M.; Grajewska, A.; Iwaniak, M. Seawater Temperature Changes in the Southern Baltic Sea (1959–2019) Forced by Climate Change. Oceanologia 2024, 66, 37–55. [Google Scholar] [CrossRef]
- Dutheil, C.; Meier, H.E.M.; Gröger, M.; Börgel, F. Warming of Baltic Sea Water Masses since 1850. Clim. Dyn. 2023, 61, 1311–1331. [Google Scholar] [CrossRef]
- Sakalli, A.; Başusta, N. Sea Surface Temperature Change in the Black Sea under Climate Change: A Simulation of the Sea Surface Temperature up to 2100. Int. J. Climatol. 2018, 38, 4687–4698. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Palau, J.L. Sea Surface Temperature in the Mediterranean: Trends and Spatial Patterns (1982–2016). Pure Appl. Geophys. 2018, 175, 4017–4029. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-Based Time-Series of Sea-Surface Temperature since 1981 for Climate Applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Hao, W.; Zhang, L.; Huang, L. Predicting Temporal and Spatial 4-D Ocean Temperature Using Satellite Data Based on a Novel Deep Learning Model. Ocean. Model. 2024, 188, 102333. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global River Discharge and Water Temperature under Climate Change. Glob. Environ. Change 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Liu, S.; Xie, Z.; Liu, B.; Wang, Y.; Gao, J.; Zeng, Y.; Xie, J.; Xie, Z.; Jia, B.; Qin, P.; et al. Global River Water Warming Due to Climate Change and Anthropogenic Heat Emission. Glob. Planet. Change 2020, 193, 103289. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global Lake Responses to Climate Change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Huang, L.; Woolway, R.I.; Timmermann, A.; Lee, S.-S.; Rodgers, K.B.; Yamaguchi, R. Emergence of Lake Conditions That Exceed Natural Temperature Variability. Nat. Geosci. 2024, 17, 763–769. [Google Scholar] [CrossRef]
- Gizińska, J.; Sojka, M. How Climate Change Affects River and Lake Water Temperature in Central-West Poland—A Case Study of the Warta River Catchment. Atmosphere 2023, 14, 330. [Google Scholar] [CrossRef]
- Woolway, R.I.; Sharma, S.; Smol, J.P. Lakes in Hot Water: The Impacts of a Changing Climate on Aquatic Ecosystems. BioScience 2022, 72, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Dibike, Y.; Marshall, R.; de Rham, L. Climatic Sensitivity of Seasonal Ice-Cover, Water Temperature and Biogeochemical Cycling in Lake 239 of the Experimental Lakes Area (ELA), Ontario, Canada. Ecol. Model. 2024, 489, 110621. [Google Scholar] [CrossRef]
- Jungkeit-Milla, K.; Pérez-Cabello, F.; de Vera-García, A.V.; Galofré, M.; Valero-Garcés, B. Lake Surface Water Temperature in High Altitude Lakes in the Pyrenees: Combining Satellite with Monitoring Data to Assess Recent Trends. Sci. Total Environ. 2024, 933, 173181. [Google Scholar] [CrossRef] [PubMed]
- Olowoyeye, T.; Ptak, M.; Sojka, M. How Do Extreme Lake Water Temperatures in Poland Respond to Climate Change? Resources 2023, 12, 107. [Google Scholar] [CrossRef]
- Grendaitė, D.; Stonevičius, E. Machine Learning Algorithms for Biophysical Classification of Lithuanian Lakes Based on Remote Sensing Data. Water 2022, 14, 1732. [Google Scholar] [CrossRef]
- Baughman, C.A.; Conaway, J.S. Comparison of Historical Water Temperature Measurements with Landsat Analysis Ready Data Provisional Surface Temperature Estimates for the Yukon River in Alaska. Remote Sens. 2021, 13, 2394. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.; Liu, S.; Shi, Z.; Shi, C. The Application of Remote Sensing Technology in Inland Water Quality Monitoring and Water Environment Science: Recent Progress and Perspectives. Remote Sens. 2025, 17, 667. [Google Scholar] [CrossRef]
- Casey, K.S.; Cornillon, P. A Comparison of Satellite and In Situ–Based Sea Surface Temperature Climatologies. J. Clim. 1999, 12, 1848–1863. [Google Scholar] [CrossRef]
- Attiah, G.; Kheyrollah Pour, H.; Scott, K.A. Lake Surface Temperature Retrieved from Landsat Satellite Series (1984 to 2021) for the North Slave Region. Earth Syst. Sci. Data 2023, 15, 1329–1355. [Google Scholar] [CrossRef]
- Sorensen, T.; Espey, E.; Kelley, J.G.W.; Kessler, J.; Gronewold, A.D. A Database of in Situ Water Temperatures for Large Inland Lakes across the Coterminous United States. Sci. Data 2024, 11, 282. [Google Scholar] [CrossRef]
- Pernaravičiūtė, B. The impact of climate change on thermal regime of Lithuanian lakes. Ekologija 2004, 2, 58–63. [Google Scholar]
- Dyba, K.; Ermida, S.; Ptak, M.; Piekarczyk, J.; Sojka, M. Evaluation of Methods for Estimating Lake Surface Water Temperature Using Landsat 8. Remote Sens. 2022, 14, 3839. [Google Scholar] [CrossRef]
- Sojka, M.; Ptak, M.; Szyga-Pluta, K.; Zhu, S. How Useful Are Moderate Resolution Imaging Spectroradiometer Observations for Inland Water Temperature Monitoring and Warming Trend Assessment in Temperate Lakes in Poland? Remote Sens. 2024, 16, 2727. [Google Scholar] [CrossRef]
- Zou, R.; Wei, L.; Guan, L. Super Resolution of Satellite-Derived Sea Surface Temperature Using a Transformer-Based Model. Remote Sens. 2023, 15, 5376. [Google Scholar] [CrossRef]
- Gao, Z.; Jiang, Y.; He, J.; Wu, J.; Christakos, G. Comparing Eight Remotely Sensed Sea Surface Temperature Products and Bayesian Maximum Entropy-Based Data Fusion Products. Spat. Stat. 2023, 54, 100741. [Google Scholar] [CrossRef]
- Kozlov, I.; Dailidienė, I.; Korosov, A.; Klemas, V.; Mingėlaitė, T. MODIS-Based Sea Surface Temperature of the Baltic Sea Curonian Lagoon. J. Mar. Syst. 2014, 129, 157–165. [Google Scholar] [CrossRef]
- Saldías, G.S.; Lara, C. Satellite-Derived Sea Surface Temperature Fronts in a River-Influenced Coastal Upwelling Area off Central–Southern Chile. Reg. Stud. Mar. Sci. 2020, 37, 101322. [Google Scholar] [CrossRef]
- Reiners, P.; Obrecht, L.; Dietz, A.; Holzwarth, S.; Kuenzer, C. First Analyses of the TIMELINE AVHRR SST Product: Long-Term Trends of Sea Surface Temperature at 1 Km Resolution across European Coastal Zones. Remote Sens. 2024, 16, 1932. [Google Scholar] [CrossRef]
- Dabulevičienė, T.; Servaitė, I. Characteristics of Marine Heatwaves in the Southeastern Baltic Sea Based on Long-Term In Situ and Satellite Observations. J. Mar. Sci. Eng. 2024, 12, 1109. [Google Scholar] [CrossRef]
- Baldock, J.; Bancroft, K.P.; Williams, M.; Shedrawi, G.; Field, S. Accurately Estimating Local Water Temperature from Remotely Sensed Satellite Sea Surface Temperature: A near Real-Time Monitoring Tool for Marine Protected Areas. Ocean Coast. Manag. 2014, 96, 73–81. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote Sensing of Inland Waters: Challenges, Progress and Future Directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current Status of Landsat Program, Science, and Applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Wang, X.H.; Paull, D.J. Can Landsat Imagery Provide Hi-Resolution Mapping of Sea Surface Temperature in a Small Embayment after a Convective Cooling Event? In Proceedings of the Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space, Hangzhou, China, 12 May 2003; Frouin, R.J., Yuan, Y., Kawamura, H., Eds.; SPIE: New York, NY, USA, 2003; p. 426. [Google Scholar] [CrossRef]
- Schaeffer, B.A.; Iiames, J.; Dwyer, J.; Urquhart, E.; Salls, W.; Rover, J.; Seegers, B. An Initial Validation of Landsat 5 and 7 Derived Surface Water Temperature for U.S. Lakes, Reservoirs, and Estuaries. Int. J. Remote Sens. 2018, 39, 7789–7805. [Google Scholar] [CrossRef]
- Bradtke, K. Landsat 8 Data as a Source of High Resolution Sea Surface Temperature Maps in the Baltic Sea. Remote Sens. 2021, 13, 4619. [Google Scholar] [CrossRef]
- Bonansea, M.; Gutierrez, S.; Correa, M.; Pana, S.; Gauto, V.; Nemiña, F.; Germán, A.; Beltramone, G.; Pinotti, L.; Ferral, A. Comparison of Water Surface Temperature Retrieval Methods from Landsat 9 Satellite Data. ISPRS Arch. 2024, XLVIII-2-W6-2024, 1–6. [Google Scholar] [CrossRef]
- Manzo, C.; Braga, F.; Zaggia, L.; Brando, V.E.; Giardino, C.; Bresciani, M.; Bassani, C. Spatio-Temporal Analysis of Prodelta Dynamics by Means of New Satellite Generation: The Case of Po River by Landsat-8 Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 210–225. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Automated Water Surface Temperature Retrieval from Landsat 8/TIRS. Remote Sens. Environ. 2020, 237, 111518. [Google Scholar] [CrossRef]
- Babbar-Sebens, M.; Li, L.; Song, K.; Xie, S. On the Use of Landsat-5 TM Satellite for Assimilating Water Temperature Observations in 3D Hydrodynamic Model of Small Inland Reservoir in Midwestern US. Adv. Remote Sens. 2013, 2, 214–227. [Google Scholar] [CrossRef]
- Echavarría-Caballero, C.; Domínguez-Gómez, J.A.; González-García, C.; Domínguez-Perez, R.; García-García, M.J. Warming Inland Water in Peninsular Spain Revealed by Landsat 5 Analysis. Geocarto Int. 2024, 39, 2371923. [Google Scholar] [CrossRef]
- Ruginis, T.; Zilius, M.; Vybernaite-Lubiene, I.; Petkuviene, J.; Bartoli, M. Seasonal Effect of Zebra Mussel Colonies on Benthic Processes in the Temperate Mesotrophic Plateliai Lake, Lithuania. Hydrobiologia 2017, 802, 23–38. [Google Scholar] [CrossRef]
- Nedveckaite, T.; Marciulioniene, D.; Mazeika, J.; Paskauskas, R.; Nedveckaite, T.; Marciulioniene, D.; Mazeika, J.; Paskauskas, R. Radiological and Environmental Effects in Ignalina Nuclear Power Plant Cooling Pond—Lake Druksiai: From Plant Put in Operation to Shut Down Period of Time. In Nuclear Power—Operation, Safety and Environment; IntechOpen: London, UK, 2011; ISBN 978-953-307-507-5. [Google Scholar]
- Šarauskienė, D. Thermal Regime Database of Ignalina Nuclear Power Plant Cooler—Lake Druksiai. Environ. Monit. Assess. 2002, 79, 1–12. [Google Scholar] [CrossRef]
- Kesminas, V.; Olechnovičienė, J. Fish community changes in the cooler of the Ignalina Nuclear Power Plant. Ekologija 2008, 54, 124–131. [Google Scholar] [CrossRef][Green Version]
- Žiliukas, V.; Žiliukienė, V.; Repečka, R. Temporal Variation in Juvenile Fish Communities of Kaunas Reservoir Littoral Zone, Lithuania. Cent. Eur. J. Biol. 2012, 7, 858–866. [Google Scholar] [CrossRef]
- Meilutytė-Barauskienė, D.; Kovalenkovienė, M.; Šarauskienė, D. The Impact of Runoff Regulation on the Thermal Regime of the Nemunas. Environ. Res. Eng. Manag. 2005, 4, 43–50. [Google Scholar]
- Idzelytė, R.; Kozlov, I.E.; Umgiesser, G. Remote Sensing of Ice Phenology and Dynamics of Europe’s Largest Coastal Lagoon (The Curonian Lagoon). Remote Sens. 2019, 11, 2059. [Google Scholar] [CrossRef]
Druksiai Lake | Plateliai Lake | Kaunas Reservoir | |||
---|---|---|---|---|---|
In Situ | L-5 | In Situ | L-5 | In Situ | L-5 |
18 October 2000 | 17 October 2000 | 14 June 1994 | 14 June 1994 | 26 April 2006 | 23 April 2006 |
27 June 2001 | 30 June 2001 | 9 September 1998 | 6 September 1998 | 27 June 2006 | 26 June 2006 |
9 September 2003 | 8 September 2003 | 15 June 1999 | 18 June 1999 | 29 June 2006 | 26 June 2006 |
15 October 2003 | 17 October 2003 | 4 May 1999 | 4 May 1999 | 12 September 2006 | 14 September 2006 |
8 September 2004 | 10 September 2004 | 24 May 2001 | 25 May 2001 | 27 September 2006 | 30 September 2006 |
11 July 2006 | 14 July 2006 | 14 October 2003 | 15 October 2003 | 29 August 2007 | 29 August 2007 |
23 May 2007 | 21 May 2007 | 5 September 2006 | 5 September 2006 | 29 July 2009 | 29 July 2009 |
6 August 2007 | 9 August 2007 | 30 June 2006 | 3 July 2006 | 31 August 2009 | 30 August 2009 |
15 April 2008 | 14 April 2008 | 29 August 2007 | 30 August 2007 | 27 September 2010 | 25 September 2010 |
27 April 2010 | 25 April 2010 | 11 October 2010 | 11 October 2010 | ||
27 September 2011 | 26 September 2011 | 20 April 2011 | 21 April 2011 | ||
2 June 2011 | 1 June 2011 | ||||
12 July 2011 | 10 July 2011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabulevičienė, T.; Vaičiūtė, D. Landsat-5 TM Imagery for Retrieving Historical Water Temperature Records in Small Inland Water Bodies and Coastal Waters of Lithuania (Northern Europe). J. Mar. Sci. Eng. 2025, 13, 1715. https://doi.org/10.3390/jmse13091715
Dabulevičienė T, Vaičiūtė D. Landsat-5 TM Imagery for Retrieving Historical Water Temperature Records in Small Inland Water Bodies and Coastal Waters of Lithuania (Northern Europe). Journal of Marine Science and Engineering. 2025; 13(9):1715. https://doi.org/10.3390/jmse13091715
Chicago/Turabian StyleDabulevičienė, Toma, and Diana Vaičiūtė. 2025. "Landsat-5 TM Imagery for Retrieving Historical Water Temperature Records in Small Inland Water Bodies and Coastal Waters of Lithuania (Northern Europe)" Journal of Marine Science and Engineering 13, no. 9: 1715. https://doi.org/10.3390/jmse13091715
APA StyleDabulevičienė, T., & Vaičiūtė, D. (2025). Landsat-5 TM Imagery for Retrieving Historical Water Temperature Records in Small Inland Water Bodies and Coastal Waters of Lithuania (Northern Europe). Journal of Marine Science and Engineering, 13(9), 1715. https://doi.org/10.3390/jmse13091715