An Efficient Laser Point Cloud Registration Method for Autonomous Surface Vehicle
Abstract
1. Introduction
2. Related Work
3. Methods
3.1. Point Cloud Filtering and Compression
3.2. Improved FPFH Feature Extraction
3.3. Two-Step Registration Based on SAC-IA and Small_GICP
4. Experimental Validation
4.1. Dataset
4.2. Experimental Setup and Evaluation Metrics
4.3. Key Parameter Settings
4.4. Evaluation of Scan-Level Point Cloud Registration
4.5. Evaluation of Map-Level Point Cloud Registration
4.6. Ablation Experiments and Runtime Analysis
5. Discussion and Prospects
5.1. Advantages of the Proposed Method
5.2. Limitations Analysis and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RTE | Relative Translation Error |
RRE | Relative Rotation Error |
tn,GT | The ground truth of the n-th translation |
Rn,GT | The ground truth of the n-th rotation |
Nsuccess | The number of successful registration results |
L | The length of the vessel |
B | The width of the vessel |
V | The speed of the vessel |
H | The height of the LiDAR installation |
k1, k2, k3 | The scaling factor, k1, k2, k3 should be a function related to speed, but it is set as a constant here for simplification |
rFPFH | Search radius for calculating angular features |
rnormal | Search radius for calculating the normal vectors of neighboring points |
Point number threshold for calculating angular features | |
Linearity threshold | |
dmin | Pairwise distance threshold between sampling points |
Sampling point count threshold | |
qx, qy, qz, qw, x, y, z | X, Y, Z coordinates and quaternions in the dataset |
References
- Shen, Y.; Man, X.; Wang, J.; Zhang, Y.; Mi, C. Truck Lifting Accident Detection Method Based on Improved PointNet++ for Container Terminals. J. Mar. Sci. Eng. 2025, 13, 256. [Google Scholar] [CrossRef]
- Ponzini, F.; Fruzzetti, C.; Sabatino, N. Real-Time Critical Marine Infrastructure Multi-Sensor Surveillance via a Constrained Stochastic Coverage Algorithm. In Proceedings of the International Ship Control Systems Symposium (iSCSS), Liverpool, UK, 5–7 November 2024. [Google Scholar]
- Chen, X.; Liu, S.; Liu, R.W.; Wu, H.; Han, B.; Zhao, J. Quantifying Arctic Oil Spilling Event Risk by Integrating an Analytic Network Process and a Fuzzy Comprehensive Evaluation Model. Ocean Coast. Manage. 2022, 228, 106326. [Google Scholar] [CrossRef]
- Chen, X.; Wu, H.; Han, B.; Liu, W.; Montewka, J.; Liu, R.W. Orientation-Aware Ship Detection via a Rotation Feature Decoupling Supported Deep Learning Approach. Eng. Appl. Artif. Intell. 2023, 125, 106686. [Google Scholar] [CrossRef]
- Xie, Y.; Nanlal, C.; Liu, Y. Reliable LiDAR-Based Ship Detection and Tracking for Autonomous Surface Vehicles in Busy Maritime Environments. Ocean. Eng. 2024, 312, 119288. [Google Scholar] [CrossRef]
- Deng, L.; Guo, T.; Wang, H.; Chi, Z.; Wu, Z.; Yuan, R. Obstacle Detection of Unmanned Surface Vehicle Based on Lidar Point Cloud Data. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8. [Google Scholar]
- Eustache, Y.; Seguin, C.; Pecout, A.; Foucher, A.; Laurent, J.; Heller, D. Marine Object Detection Using LiDAR on an Unmanned Surface Vehicle. IEEE Access 2025, 13, 121658–121669. [Google Scholar] [CrossRef]
- Ponzini, F.; Zaccone, R.; Martelli, M. LiDAR target detection and classification for ship situational awareness: A hybrid learning approach. Appl. Ocean Res. 2025, 158, 104552. [Google Scholar] [CrossRef]
- Sun, C.-Z.; Zhang, B.; Wang, J.-K.; Zhang, C.-S. A Review of Visual SLAM Based on Unmanned Systems. In Proceedings of the 2021 2nd International Conference on Artificial Intelligence and Education (ICAIE), Dali, China, 18–20 June 2021; pp. 226–234. [Google Scholar]
- Helgesen, Ø.K.; Vasstein, K.; Brekke, E.F.; Stahl, A. Heterogeneous multi-sensor tracking for an autonomous surface vehicle in a littoral environment. Ocean Eng. 2022, 252, 111168. [Google Scholar] [CrossRef]
- Wang, H.; Yin, Y.; Jing, Q.; Cao, Z.; Shao, Z.; Guo, D. Berthing assistance system for autonomous surface vehicles based on 3D LiDAR. Ocean. Eng. 2024, 291, 116444. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.-Q. Spatial State Analysis of Ship During Berthing and Unberthing Process Utilizing Incomplete 3D LiDAR Point Cloud Data. J. Mar. Sci. Eng. 2025, 13, 347. [Google Scholar] [CrossRef]
- Liu, G.; Pan, S.; Gao, W.; Yu, B.; Ma, C. LiDAR mini-matching positioning method based on constraint of lightweight point cloud feature map. Measurement 2024, 225, 113913. [Google Scholar] [CrossRef]
- Koide, K.; Yokozuka, M.; Oishi, S.; Banno, A. Voxelized GICP for Fast and Accurate 3D Point Cloud Registration. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 11054–11059. [Google Scholar]
- Vizzo, I.; Guadagnino, T.; Mersch, B.; Wiesmann, L.; Behley, J.; Stachniss, C. KISS-ICP: In Defense of Point-to-Point ICP—Simple, Accurate, and Robust Registration If Done the Right Way. IEEE Robot. Autom. Lett. 2023, 8, 1029–1036. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y. Motion pose estimation of inshore ships based on point cloud. Measurement 2022, 205, 112189. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Xie, M. Preliminary study for motion pose of inshore ships based on point cloud: Estimation of ship berthing angle. Measurement 2023, 214, 112836. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Wang, H.; Yin, Y.; Jing, Q. Comparative Analysis of 3D LiDAR Scan-Matching Methods for State Estimation of Autonomous Surface Vessel. J. Mar. Sci. Eng. 2023, 11, 840. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, P.; Gong, M.; Ding, H.; Tang, Z.; Liu, Y.; Ma, W.; Miao, Q. Evolutionary Multitasking With Solution Space Cutting for Point Cloud Registration. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 110–125. [Google Scholar] [CrossRef]
- Lu, F.; Chen, G.; Liu, Y.; Zhan, Y.; Li, Z.; Tao, D.; Jiang, C. Sparse-to-Dense Matching Network for Large-Scale LiDAR Point Cloud Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 11270–11282. [Google Scholar] [CrossRef]
- Magnusson, M. The Three-Dimensional Normal-Distributions Transform: An Efficient Representation for Registration, Surface Analysis, and Loop Detection. Ph.D. Thesis, Örebro Universitet, Örebro, Schweden, 2009. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 3212–3217. [Google Scholar]
- Chen, G.; Wang, M.; Yue, Y.; Zhang, Q.; Yuan, L.; Yue, Y. Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. IEEE Trans. Neural Networks Learn. Syst. 2023, 35, 13368–13382. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, K.; Yang, F.; Tao, W. SC2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 13221–13231. [Google Scholar]
- Lv, C.; Lin, W.; Zhao, B. KSS-ICP: Point Cloud Registration Based on Kendall Shape Space. IEEE Trans. Image Process 2023, 32, 1681–1693. [Google Scholar] [CrossRef]
- He, L.; Li, W.; Guan, Y.; Zhang, H. IGICP: Intensity and Geometry Enhanced LiDAR Odometry. IEEE Trans. Intell. Veh. 2024, 9, 541–554. [Google Scholar] [CrossRef]
- Qin, Z.; Yu, H.; Wang, C.; Guo, Y.; Peng, Y.; Ilic, S.; Hu, D.; Xu, K. GeoTransformer: Fast and Robust Point Cloud Registration With Geometric Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9806–9821. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Y.; Hu, Q.; Wang, B.; Chen, J.; Dong, Z.; Guo, Y.; Wang, W.; Yang, B. RoReg: Pairwise Point Cloud Registration With Oriented Descriptors and Local Rotations. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 10376–10393. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Qin, H.; Zhang, X.; Wang, Y.; Xiang, T.; Chen, B. Using Multi-Level Consistency Learning for Partial-to-Partial Point Cloud Registration. IEEE Trans. Vis. Comput. Graph. 2024, 30, 4881–4894. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yan, L.; Xie, H.; Wei, P.; Dai, J. A hierarchical multiview registration framework of TLS point clouds based on loop constraint. ISPRS J. Photogramm. Remote Sens. 2023, 195, 65–76. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Ma, W.; Gong, M.; Fan, X.; Zhang, M.; Qin, A.K.; Miao, Q. RORNet: Partial-to-Partial Registration Network With Reliable Overlapping Representations. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 15453–15466. [Google Scholar] [CrossRef]
- Guo, Y.; Sohel, F.; Bennamoun, M.; Lu, M.; Wan, J. Rotational Projection Statistics for 3D Local Surface Description and Object Recognition. Int. J. Comput. Vis. 2013, 105, 63–86. [Google Scholar] [CrossRef]
- Zhong, Y. Intrinsic Shape Signatures: A Shape Descriptor for 3D Object Recognition. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009; pp. 689–696. [Google Scholar]
- Lowe, D.G. Object Recognition from Local Scale-Invariant Features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece, 20–25 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Drost, B.; Ulrich, M.; Navab, N.; Ilic, S. Model Globally, Match Locally: Efficient and Robust 3D Object Recognition. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 998–1005. [Google Scholar]
- Aldoma, A.; Vincze, M.; Blodow, N.; Gossow, D.; Gedikli, S.; Rusu, R.B.; Bradski, G. CAD-Model Recognition and 6DOF Pose Estimation Using 3D Cues. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops, Barcelona, Spain, 6–13 November 2011; pp. 585–592. [Google Scholar]
- Zhou, Q.-Y.; Park, J.; Koltun, V. Fast Global Registration. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 766–782. [Google Scholar]
- Yang, H.; Shi, J.; Carlone, L. TEASER: Fast and Certifiable Point Cloud Registration. IEEE Trans. Robot. 2021, 37, 314–333. [Google Scholar] [CrossRef]
- Lim, H.; Kim, B.; Kim, D.; Mason Lee, E.; Myung, H. Quatro++: Robust global registration exploiting ground segmentation for loop closing in LiDAR SLAM. Int. J. Robot. Res. 2024, 43, 685–715. [Google Scholar] [CrossRef]
- Yang, H.; Antonante, P.; Tzoumas, V.; Carlone, L. Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection. IEEE Robot. Autom. Lett. 2020, 5, 1127–1134. [Google Scholar] [CrossRef]
- Sun, L. RANSIC: Fast and Highly Robust Estimation for Rotation Search and Point Cloud Registration Using Invariant Compatibility. IEEE Robot. Autom. Lett. 2022, 7, 143–150. [Google Scholar] [CrossRef]
- Sun, L.; Deng, L. TriVoC: Efficient Voting-Based Consensus Maximization for Robust Point Cloud Registration with Extreme Outlier Ratios. IEEE Robot. Autom. Lett. 2022, 7, 4654–4661. [Google Scholar] [CrossRef]
- Lee, S.H.; Civera, J.; Vandewalle, P. PCR-99: A Practical Method for Point Cloud Registration with 99 Percent Outliers. In Proceedings of the Computer Vision—ECCV 2024 Workshops, Milan, Italy, 29 September–4 October 2024; Del Bue, A., Canton, C., Pont-Tuset, J., Tommasi, T., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 14–29. [Google Scholar]
- Lim, H.; Kim, D.; Shin, G.; Shi, J.; Vizzo, I.; Myung, H.; Park, J.; Carlone, L. KISS-Matcher: Fast and Robust Point Cloud Registration Revisited. arXiv 2024, arXiv:2409.15615. [Google Scholar] [CrossRef]
- Parra Bustos, Á.; Chin, T.-J. Guaranteed Outlier Removal for Point Cloud Registration with Correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2868–2882. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Chin, T.-J.; Bustos, A.P.; Schindler, K. Practical optimal registration of terrestrial LiDAR scan pairs. ISPRS J. Photogramm. Remote Sens. 2019, 147, 118–131. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Zhang, S.; Zhang, Y. 3D Registration with Maximal Cliques. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–23 June 2023; pp. 17745–17754. [Google Scholar]
- Li, R.; Yuan, X.; Gan, S.; Bi, R.; Gao, S.; Luo, W.; Chen, C. An Effective Point Cloud Registration Method Based on Robust Removal of Outliers. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5701316. [Google Scholar] [CrossRef]
- Wang, H.; Yin, Y.; Jing, Q.; Xiao, F.; Cao, Z. A berthing state estimation pipeline based on 3D point cloud scan-matching and berth line fitting. Measurement 2024, 226, 114196. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.; Chen, H. Real-Time LiDAR Point Cloud Compression and Transmission for Resource-constrained Robots. arXiv 2025, arXiv:2502.06123. [Google Scholar]
- Chung, D.; Kim, J.; Lee, C.; Kim, J. Pohang canal dataset: A multimodal maritime dataset for autonomous navigation in restricted waters. Int. J. Robot. Res. 2023, 42, 1104–1114. [Google Scholar] [CrossRef]
- Zheng, C.; Xu, W.; Zou, Z.; Hua, T.; Yuan, C.; He, D.; Zhou, B.; Liu, Z.; Lin, J.; Zhu, F.; et al. FAST-LIVO2: Fast, Direct LiDAR–Inertial–Visual Odometry. IEEE Trans. Robot. 2025, 41, 326–346. [Google Scholar] [CrossRef]
- Yew, Z.J.; Lee, G.H. 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Volume 11219, pp. 630–646. [Google Scholar]
- Ao, S.; Hu, Q.; Yang, B.; Markham, A.; Guo, Y. SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 11753–11762. [Google Scholar]
- Bai, X.; Luo, Z.; Zhou, L.; Fu, H.; Quan, L.; Tai, C.-L. D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 6359–6367. [Google Scholar]
- Huang, S.; Gojcic, Z.; Usvyatsov, M.; Wieser, A.; Schindler, K. Predator: Registration of 3D Point Clouds With Low Overlap. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 4267–4276. [Google Scholar]
- Poiesi, F.; Boscaini, D. Learning General and Distinctive 3D Local Deep Descriptors for Point Cloud Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3979–3985. [Google Scholar] [CrossRef]
- Segal, A.V.; Haehnel, D.; Thrun, S. Generalized_ICP. In Robotics: Science and Systems (RSS); MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Yuan, C.; Lin, J.; Zou, Z.; Hong, X.; Zhang, F. Std: Stable triangle descriptor for 3d place recognition. arXiv 2022, arXiv:2209.12435. [Google Scholar]
- Liu, J.; Wang, G.; Liu, Z.; Jiang, C.; Pollefeys, M.; Wang, H. RegFormer: An Efficient Projection-Aware Transformer Network for Large-Scale Point Cloud Registration. arXiv 2023, arXiv:2303.12384. [Google Scholar] [CrossRef]
- Koide, K. Small_gicp: Efficient and parallel algorithms for point cloud registration. J. Open Source Softw. 2024, 9, 6948. [Google Scholar] [CrossRef]
Method | RTE (cm)↓ | RRE (°)↓ | Success Rate (%)↑ | |
---|---|---|---|---|
Learning-based | 3DFeat-Net [54] | 25.90 | 0.57 | 95.97 |
Predator [57] | 6.80 | 0.27 | 99.80 | |
SpinNet [55] | 9.88 | 0.47 | 99.10 | |
D3Feat [56] | 6.90 | 0.24 | 99.81 | |
GeDi [58] | 8.43 | 0. 40 | 97.30 | |
hybrid methods | GeoTransformer [28] | 7.40 | 0.27 | 99.80 |
RegFormer [61] | 8.40 | 0.24 | 99.80 | |
Conventional | G-ICP [59] | 8.56 | 0.22 | 37.95 |
STD [60] | 20.94 | 0.57 | 30.58 | |
FPFH + FGR [38] | 6.94 | 0.33 | 98.92 | |
FPFH + TEASER [39] | 9.36 | 0.59 | 99.64 | |
KISS-Matcher [45] | 18.10 | 0.94 | 100 | |
Proposed | 16.41 | 0.18 | 100 |
Method | RTE (cm)↓ | RRE (°)↓ | Success Rate (%)↑ |
---|---|---|---|
Predator [57] | 80.49 | 0.58 | 42.50 |
D3Feat [56] | 107.04 | 0.94 | 57.30 |
FPFH + FGR [38] | 24.83 | 0.39 | 84.60 |
FPFH + TEASER [39] | 39.91 | 0.91 | 77.50 |
Proposed | 13.05 | 0.13 | 100.00 |
Source Point Cloud | Target Point Cloud | |
---|---|---|
Number of Points | 71,350 | 74,568 |
Time | 10th Second | 30th Second |
qx | 0.019825 | 0.021748 |
qy | 0.023086 | 0.019503 |
qz | −0.753091 | −0.620671 |
qw | 0.779209 | 0.818868 |
x | 3,986,632.517502 | 3,986,633.720721 |
y | 534,047.507051 | 534,047.380032 |
z | 1.924554 | 1.930252 |
Method | RTE (cm) | Runtime (ms) |
---|---|---|
FPFH + FGR | 6.94 | 500 |
Improved FPFH + FGR | 9.82 | 428.27 |
PCFC + Improved FPFH + FGR | 5.15 | 329.53 |
PCFC + Improved FPFH+ SAC-IA | 26.05 | 160.08 |
PCFC + Improved FPFH + SAC-IA + Small_GICP | 12.41 | 90.08 |
Device Model | CPU | Memory | Architecture | Success Rate (%) | Runtime (ms) | Success Rate (%) | Runtime (ms) |
---|---|---|---|---|---|---|---|
Kiss-Matcher | Proposed | ||||||
Intel-NUC | Intel i7-1165G7@2.8GHz×8 | 16 GB | X86_64 | 64 | 126.338 | 89 | 86.243 |
Radxa X2L | Intel J4125@2.0GHz×4 | 8 GB | X86_64 | - | - | 66 | 498.713 |
ROC-RK3588 | RK3588S@2.4GHz×8 | 8 GB | Arm64 | 68 | 248.517 | 75 | 110.735 |
Horizon Sunrise X3 PI | Cortex-A53@1.2GHz×4 | 4 GB | Arm64 | - | - | - | - |
LubanCat | RK3588S@2.4GHz×8 | 4 GB | Arm64 | 59 | 159.003 | 74 | 129.5611 |
Raspberry Pi 4B | Cortex-A72@1.5GHz×4 | 8 GB | Arm64 | - | - | 61 | 364.681 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Jing, Q.; Yin, Y.; Xu, H. An Efficient Laser Point Cloud Registration Method for Autonomous Surface Vehicle. J. Mar. Sci. Eng. 2025, 13, 1720. https://doi.org/10.3390/jmse13091720
Guo D, Jing Q, Yin Y, Xu H. An Efficient Laser Point Cloud Registration Method for Autonomous Surface Vehicle. Journal of Marine Science and Engineering. 2025; 13(9):1720. https://doi.org/10.3390/jmse13091720
Chicago/Turabian StyleGuo, Dongdong, Qianfeng Jing, Yong Yin, and Haitong Xu. 2025. "An Efficient Laser Point Cloud Registration Method for Autonomous Surface Vehicle" Journal of Marine Science and Engineering 13, no. 9: 1720. https://doi.org/10.3390/jmse13091720
APA StyleGuo, D., Jing, Q., Yin, Y., & Xu, H. (2025). An Efficient Laser Point Cloud Registration Method for Autonomous Surface Vehicle. Journal of Marine Science and Engineering, 13(9), 1720. https://doi.org/10.3390/jmse13091720