Exchange Flow Variability between Hypersaline Shark Bay and the Ocean
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Field Experiments
2.1.1. Geographe Channel (23 August–1 September 2011)
2.1.2. Naturaliste Channel (25 June–23 July 2009)
2.2. Data Analysis
3. Results
3.1. Density Structure
3.2. Currents
3.3. Turbulent Mixing and Dense Water Outflows (Geographe Channel 2011)
- The highest rate of P was consistently found near the seabed, with P not symmetric between flood and ebb. The flood rate of P (~10−4 W m−3) was typically <20% of the rate during max ebb flow (~10−3 W m−3) (Figure 6b-I).
- Strongest pulses in P (~10−2 W m−3) occurred near the seabed during times of maximum shear but with low current speeds. This occurred during flood tides, despite low flow speeds when strong tidal forcing opposed the near-bed outflow under stratified conditions (e.g., 26, 28 August; Figure 6b-II).
- A region of increased rates of P (~10−3 W m−3) existed in the shear layer interface in the mid water column (Figure 6b-III). During times of low tidal flows, this interface had rates of P > 3 times those near the seabed at corresponding times.
3.4. Turbulent Mixing and Dense Water Outflows (Naturaliste Channel 2009)
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Pritchard, D.W. Estuarine Hydrography. In Advances in Geophysics; Landsberg, H.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1952; pp. 243–280. [Google Scholar]
- Shearman, R.K.; Brink, K.H. Evaporative dense water formation and cross-shelf exchange over the northwest Australian inner shelf. J. Geophys. Res. 2010, 115, C06027. [Google Scholar] [CrossRef]
- Pattiaratchi, C.; Hollings, B.; Woo, M.; Welhena, T. Dense shelf water formation along the south-west Australian inner shelf. Geophys. Res. Lett. 2011, 38, L10609. [Google Scholar] [CrossRef]
- Lennon, G.W.; Bowers, D.G.; Nunes, R.A.; Scott, B.D.; Ali, M.; Boyle, J.; Cai, W.J.; Herzfeld, M.; Johansson, G.; Nield, S.; et al. Gravity Currents and the Release of Salt from an Inverse Estuary. Nature 1987, 327, 695–697. [Google Scholar] [CrossRef]
- Nunes, R.; Lennon, G. Physical property distributions and seasonal trends in Spencer Gulf, South Australia: An inverse estuary. Mar. Freshw. Res. 1986, 37, 39–53. [Google Scholar] [CrossRef]
- Nunes, R.A.; Lennon, G.W. Episodic Stratification and Gravity Currents in a Marine-Environment of Modulated Turbulence. J. Geophys. Res.-Oceans 1987, 92, 5465–5480. [Google Scholar] [CrossRef]
- Ribbe, J. A study into the export of saline water from Hervey Bay, Australia. Estuarine. Coast. Shelf Sci. 2006, 66, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Largier, J.L.; Hollibaugh, J.T.; Smith, S.V. Seasonally Hypersaline Estuaries in Mediterranean-climate Regions. Estuarine. Coast. Shelf Sci. 1997, 45, 789–797. [Google Scholar] [CrossRef]
- Lavin, M.F.; Godinez, V.M.; Alvarez, L.G. Inverse-estuarine features of the Upper Gulf of California. Estuar. Coast. Shelf Sci. 1998, 47, 769–795. [Google Scholar] [CrossRef]
- Valle-Levinson, A.; Delgado, J.A.; Atkinson, L.P. Reversing Water Exchange Patterns at the Entrance to a Semiarid Coastal Lagoon. Estuar. Coast. Shelf Sci. 2001, 53, 825–838. [Google Scholar] [CrossRef]
- Ivanov, V.V.; Shapiro, G.I.; Huthnance, J.M.; Aleynik, D.L.; Golovin, P.N. Cascades of dense water around the world ocean. Prog. Oceanogr. 2004, 60, 47–98. [Google Scholar] [CrossRef]
- Burling, M.C.; Ivey, G.N.; Pattiaratchi, C.B. Convectively driven exchange in a shallow coastal embayment. Cont. Shelf Res. 1999, 19, 1599–1616. [Google Scholar] [CrossRef]
- Nahas, E.L.; Pattiaratchi, C.B.; Ivey, G.N. Processes controlling the position of frontal systems in Shark Bay, Western Australia. Estuar. Coast. Shelf Sci. 2005, 65, 463–474. [Google Scholar] [CrossRef]
- James, N.P.; Collins, L.B.; Bone, Y.; Hallock, P. Subtropical carbonates in a temperate realm: Modern sediments on the southwest Australian shelf. J. Sediment. Res. 1999, 69, 1297–1321. [Google Scholar] [CrossRef]
- Woo, M.; Pattiaratchi, C.; Schroeder, W. Summer surface circulation along the Gascoyne continental shelf, Western Australia. Cont. Shelf Res. 2006, 26, 132–152. [Google Scholar] [CrossRef]
- Logan, B.W.; Cebulski, D.E. Sedimentary Environments of Shark Bay, Western Australia; American Association of Petroleum Geologists: Tulsa, OK, USA, 1970; pp. 1–37. [Google Scholar]
- Hetzel, Y.; Pattiaratchi, C.; Lowe, R. Intermittent dense water outflows under variable tidal forcing in Shark Bay, Western Australia. Cont. Shelf Res. 2013, 66, 36–48. [Google Scholar] [CrossRef]
- Linden, P.F.; Simpson, J.E. Modulated mixing and frontogenesis in shallow seas and estuaries. Cont. Shelf Res. 1988, 8, 1107–1127. [Google Scholar] [CrossRef]
- Hetzel, Y.; Pattiaratchi, C.; Lowe, R.; Hofmeister, R. Wind and tidal mixing controls on stratification and dense water outflows in a large hypersaline bay. J. Geophys. Res. Oceans 2015, 120, 6034–6056. [Google Scholar] [CrossRef]
- Burling, M.C.; Pattiaratchi, C.B.; Ivey, G.N. The tidal regime of Shark Bay, Western Australia. Estuar. Coast. Shelf Sci. 2003, 57, 725–735. [Google Scholar] [CrossRef]
- DASETT. Nomination of Shark Bay, Western Australia by the Government of Australia for Inclusion in the World Heritage List; The Department of the Arts, Sport, the Environment: Tourism, Territories, 1990. [Google Scholar]
- Smith, R.L.; Huyer, A.; Godfrey, J.S.; Church, J.A. The Leeuwin Current off Western Australia, 1986–1987. J. Phys. Oceanogr. 1991, 21, 323–345. [Google Scholar] [CrossRef] [Green Version]
- Pattiaratchi, C.B.; Woo, M. The mean state of the Leeuwin Current system between North West Cape and Cape Leeuwin. J. R. Soc. West. Aust. 2009, 92, 221–241. [Google Scholar]
- Pattiaratchi, C.; Hegge, B.; Gould, J.; Eliot, I. Impact of sea-breeze activity on nearshore and foreshore processes in southwestern Australia. Cont. Shelf Res. 1997, 17, 1539–1560. [Google Scholar] [CrossRef]
- Chao, Y.; Li, Z.J.; Farrara, J.D.; Hung, P. Blending Sea Surface Temperatures from Multiple Satellites and In Situ Observations for Coastal Oceans. J. Atmos. Ocean. Technol. 2009, 26, 1415–1426. [Google Scholar] [CrossRef]
- Lumpkin, R.; Pazos, M. Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results. In Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics; Cambridge University Press: Cambridge, UK, 2007; pp. 39–67. [Google Scholar]
- Emery, W.J.; Thomson, R.E. Data Analysis Methods in Physical Oceanography; Pergamon Press: Oxford, UK, 1997; 634p. [Google Scholar]
- Beardsley, R.C.; Limeburner, R.; Rosenfeld, L.K. CODE-2: Moored Array and Large-Scale Data Report; WHOI-85-35; Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 1985; 234p. [Google Scholar]
- Lohrmann, A.; Hackett, B.; Roed, L.P. High-resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent sonar. J. Atmos. Ocean. Technol. 1990, 7, 19–37. [Google Scholar] [CrossRef]
- Stacey, M.T.; Monismith, S.G.; Burau, J.R. Observations of turbulence in a partially stratified estuary. J. Phys. Oceanogr. 1999, 29, 1950–1970. [Google Scholar] [CrossRef]
- Lu, Y.; Lueck, R.; Huang, D. Turbulence Characteristics in a Tidal Channel. J. Phys. Oceanogr. 2000, 30, 855–867. [Google Scholar] [CrossRef]
- Rippeth, T.; Williams, E.; Simpson, J. Reynolds Stress and Turbulent Energy Production in a Tidal Channel. J. Phys. Oceanogr. 2002, 32, 1242–1251. [Google Scholar] [CrossRef]
- Stacey, M.T.; Monismith, S.G.; Burau, J.R. Measurements of Reynolds stress profiles in unstratified tidal flow. J. Geophys. Res. 1999, 104, 10933–10949. [Google Scholar] [CrossRef] [Green Version]
- Baumert, H.Z.; Simpson, J.; Sündermann, J. Marine Turbulence: Theories, Observations, and Models; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Rippeth, T.P.; Simpson, J.H.; Williams, E.; Inall, M.E. Measurement of the Rates of Production and Dissipation of Turbulent Kinetic Energy in an Energetic Tidal Flow: Red Wharf Bay Revisited. J. Phys. Oceanogr. 2003, 33, 1889. [Google Scholar] [CrossRef]
- Lu, Y.; Lueck, R.G. Using a Broadband ADCP in a Tidal Channel. Part II: Turbulence. J. Atmos. Ocean. Technol. 1999, 16, 1568–1579. [Google Scholar] [CrossRef]
- Williams, E.; Simpson, J.H. Uncertainties in estimates of Reynolds stress and TKE production rate using the ADCP variance method. J. Atmos. Ocean. Technol. 2004, 21, 347–357. [Google Scholar] [CrossRef]
- Nidzieko, N.J.; Fong, D.A.; Hench, J.L. Comparison of Reynolds stress estimates derived from standard and fast-ping ADCPs. J. Atmos. Ocean. Technol. 2006, 23, 854–861. [Google Scholar] [CrossRef]
- Souza, A.; Howarth, M. Estimates of Reynolds stress in a highly energetic shelf sea. Ocean Dyn. 2005, 55, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Rosman, J.H.; Hench, J.L.; Koseff, J.R.; Monismith, S.G. Extracting Reynolds stresses from acoustic Doppler current profiler measurements in wave-dominated environments. J. Atmos. Ocean. Technol. 2008, 25, 286–306. [Google Scholar] [CrossRef]
- Burling, M.C. Oceanographic Aspects of Shark Bay, Western Australia, in School of Environmental Systems Engineering; University of Western Australia: Perth, Australia, 1998; p. 101. [Google Scholar]
- Nunes Vaz, R.A.; Lennon, G.W.; Samarasinghe, J.R.D. The Negative Role of Turbulence in Estuarine Mass Transport. Estuar. Coast. Shelf Sci. 1989, 28, 361–377. [Google Scholar] [CrossRef]
- Simpson, J.H.; Hunter, J.R. Fronts in Irish Sea. Nature 1974, 250, 404–406. [Google Scholar] [CrossRef]
- Lavin, P.M.F.; Marinone, M.S.G.L. An overview of the physical oceanography of the Gulf of California. In Nonlinear Processes in Geophysical Fluid Dynamics; Velasco Fuentes, O.U., Sheinbaum, J., Ochoa de la Torre, J.L., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Kangas, M.I.; Chandrapavan, A.; Hetzel, Y.L.; Sporrer, E.C. Minimising Gear Conflict and Resource Sharing Issues in the Shark Bay Trawl Fisheries and Promotion of Scallop Recruitment; Fisheries Research Report No. 229; Department of Fisheries: Western Australia, Australia, 2012; 136p.
- Joll, L.M.; Caputi, N. Environmental influences on recruitment in the saucer scallop (Amusium balloti) fishery of Shark Bay, Western Australia. ICES Mar. Sci. Symp. 1995, 199, 47–53. [Google Scholar]
- Caputi, N.; Fletcher, W.J.; Pearce, A.; Chubb, C.F. Effect of the Leeuwin Current on the recruitment of fish and invertebrates along the Western Australian coast. Mar. Freshw. Res. 1996, 47, 147–155. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hetzel, Y.; Pattiaratchi, C.; Mihanović, H. Exchange Flow Variability between Hypersaline Shark Bay and the Ocean. J. Mar. Sci. Eng. 2018, 6, 65. https://doi.org/10.3390/jmse6020065
Hetzel Y, Pattiaratchi C, Mihanović H. Exchange Flow Variability between Hypersaline Shark Bay and the Ocean. Journal of Marine Science and Engineering. 2018; 6(2):65. https://doi.org/10.3390/jmse6020065
Chicago/Turabian StyleHetzel, Yasha, Charitha Pattiaratchi, and Hrvoje Mihanović. 2018. "Exchange Flow Variability between Hypersaline Shark Bay and the Ocean" Journal of Marine Science and Engineering 6, no. 2: 65. https://doi.org/10.3390/jmse6020065
APA StyleHetzel, Y., Pattiaratchi, C., & Mihanović, H. (2018). Exchange Flow Variability between Hypersaline Shark Bay and the Ocean. Journal of Marine Science and Engineering, 6(2), 65. https://doi.org/10.3390/jmse6020065