Pressure Control of Insulation Space for Liquefied Natural Gas Carrier with Nonlinear Feedback Technique
Abstract
:1. Introduction
2. Literature Review
3. Nonlinear Feedback
4. Problem Formulation and Controller Design
5. Simulation and Analysis
5.1. Without Disturbance
5.2. With Disturbance
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burel, F.; Taccani, R.; Zuliani, N. Improving sustainability of maritime transport through utilization of liquefied natural gas (LNG) for propulsion. Energy 2013, 57, 412–420. [Google Scholar] [CrossRef]
- Thiagarajan, K.P.; Seah, R. Liquefied Natural Gas Carriers. In Springer Handbook of Ocean Engineering; Dhanak, M.R., Xiros, N.I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 963–983. ISBN 978-3-319-16648-3. [Google Scholar]
- Zoolfakar, M.R.; Norman, R.; Mesbahi, E.; Dahalan, W.M.; Zarina, M.K.P. Holistic study of liquefied natural gas carrier systems. Procedia Comput. Sci. 2014, 36, 440–445. [Google Scholar] [CrossRef]
- Krikkis, R.N. A thermodynamic and heat transfer model for LNG ageing during ship transportation. Towards an efficient boil-off gas management. Cryogenics 2018, 92, 76–83. [Google Scholar] [CrossRef]
- Chun, M.S.; Kim, M.H.; Kim, W.S.; Kim, S.H.; Lee, J.M. Experimental investigation on the impact behavior of membrane-type LNG carrier insulation system. J. Loss. Prevent. Proc. 2009, 22, 901–907. [Google Scholar] [CrossRef]
- Sohn, J.M.; Bae, D.M.; Bae, S.Y.; Paik, J.K. Nonlinear structural behaviour of membrane-type LNG carrier cargo containment systems under impact pressure loads at −163 °C. Ships Offshore Struct. 2016, 12, 722–733. [Google Scholar] [CrossRef]
- He, Q.H.; Yin, J.C.; Zhang, W.J. Related operation essentials of membrane types lng carriers on considering the pressure of cargo tank and insulation space. Ship Ocean Eng. 2015, 44, 6–9. [Google Scholar]
- Doyle, J.C.; Tannenbaum, A.; Francis, B.A. Feedback Control Theory; Macmillan Publishing Company: New York, NY, USA, 1992. [Google Scholar]
- Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. Nonlinear and Adaptive Control Design; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Na, J.; Chen, Q.; Ren, X.; Guo, Y. Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans. Ind. Electron. 2014, 61, 486–494. [Google Scholar] [CrossRef]
- Wang, X.P.; Zhang, X.K.; Guan, W.; Ren, J.S. A simple and direct nonlinear robust control algorithm. In Proceedings of the IEEE 2008 Chinese Control and Decision, Yantai, China, 2–4 July 2008; pp. 3005–3010. [Google Scholar]
- Guan, W.; Yang, G.H. Analysis and design of output feedback control systems in the presence of actuator saturation. In Proceedings of the IEEE 2009 American Control, Louis, MO, USA, 10–12 June 2009; pp. 2564–2568. [Google Scholar]
- Chen, B.M.; Lee, T.H.; Peng, K.; Venkataramanan, V. Composite nonlinear feedback control for linear systems with input saturation: Theory and an application. IEEE Trans. Autom. Control 2003, 48, 427–439. [Google Scholar] [CrossRef]
- Lu, T.; Lan, W.Y. Composite nonlinear feedback control for strict-feedback nonlinear systems with input saturation. Int. J. Control 2018, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.K. Control algorithm for autopilot driven by sine of course deviation. Navig. China 2011, 34, 1–4. [Google Scholar]
- Zhang, X.K.; Zhang, G.Q. Design of ship course-keeping autopilot using a sine function-based nonlinear feedback technique. J. Navig. 2016, 69, 246–256. [Google Scholar] [CrossRef]
- Zhang, X.K.; Yang, G.P.; Zhang, G.; Zhang, G.Q. Improved concise backstepping control of course keeping for ships using nonlinear feedback technique. J. Navig. 2017, 70, 1–14. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.K.; Im, N.K. Ship nonlinear-feedback course keeping algorithm based on MMG model driven by bipolar sigmoid function for berthing. Int. J. Nav. Arch. Ocean Eng. 2017, 9, 525–536. [Google Scholar] [CrossRef]
- Chen, X.J.; Zhang, X.K. Nonlinear feedback control based on ANFIS. In Proceedings of the IEEE 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015; pp. 559–563. [Google Scholar]
- Zhang, X.K. Robust control of longitudinal motion for hydrofoils based on nonlinear feedback. Navig. China 2016, 39, 60–63. [Google Scholar]
- Fan, Y.; Mu, D.; Zhang, X.; Wang, G.; Guo, C. Course keeping control based on integrated nonlinear feedback for a USV with pod-like propulsion. J. Navig. 2018, 1–21. [Google Scholar] [CrossRef]
- Choi, S.W.; Roh, J.U.; Kim, M.S. Analysis of two main LNG CCS (cargo containment system) insulation boxes for leakage safety using experimentally defined thermal properties. Appl. Ocean Res. 2012, 37, 72–89. [Google Scholar] [CrossRef]
- Wu, X.X.; Zhang, G.Q.; Zhang, W.D. optimized control for pressure maintenance system of LNG tank via the mirror-mapping technique. Control Decis. 2018. [Google Scholar] [CrossRef]
- Zhang, X.K. New method on design of robust controller for unstable process. In Proceedings of the IEEE International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; pp. 643–648. [Google Scholar]
- Zhang, X.K.; Zhang, G.Q. Stabilization of pure unstable delay systems by the mirror mapping technique. J. Proc. Control 2013, 23, 1465–1470. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Zhang, X.K.; Zhang, W.D. Robust controller synthesis for high order unstable processes with time delay using mirror mapping technique. ISA Trans. 2015, 59, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Q.; Zhang, X.K. Stability analysis and design of integrating unstable delay processes using the mirror-mapping technique. J. Proc. Control 2014, 24, 1038–1045. [Google Scholar] [CrossRef]
- Zhang, X.K.; Jia, X.L. Simplification of mixed sensitivity algorithm and its application. Autom. Control Comput. Sci. 2002, 36, 28–33. [Google Scholar]
- Zhang, X.K.; Jin, Y.C.; Yang, C.G.; Zhang, L.K. A kind of robust rudder roll-damping system. In Proceedings of the IEEE 1st International Symposium on Systems and Control in Aerospace and Astronautics, Harbin, China, 19–21 January 2006; pp. 1151–1154. [Google Scholar]
- Miroslav, R.M.; Aleksandar, I.R. Control of stable, integrating and unstable processes by the Modified Smith Predictor. J. Proc. Control 2012, 22, 338–343. [Google Scholar]
Controller | ||||||
---|---|---|---|---|---|---|
Without nonlinear feedback | 2.133 | 2.002 | 6.54 | 1.913 | 7.292 | 2.634 |
2-DOF | 2.181 | 2 | 9.05 | 2.911 | 19.824 | 3.743 |
With nonlinear feedback in this paper | 2.016 | 2.016 | 0.0 | 7.514 | 7.514 | 18.159 |
Plant | Controller | MAE | MAC | TV | MSE |
---|---|---|---|---|---|
Normal | Without Nonlinear Feedback | 0.03723 | 0.02739 | 0.08735 | 0.04945 |
2DOF | 0.127 | 0.02029 | 0.03404 | 0.2127 | |
Nonlinear Feedback | 0.08239 | 0.01343 | 0.0267 | 0.1076 | |
Disturbed | Without Nonlinear Feedback | 0.045 | 0.03393 | 0.09265 | 0.04982 |
2DOF | 0.1738 | 0.02798 | 0.0441 | 0.2406 | |
Nonlinear Feedback | 0.1241 | 0.01986 | 0.03128 | 0.1153 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Zhang, X.; Zou, X. Pressure Control of Insulation Space for Liquefied Natural Gas Carrier with Nonlinear Feedback Technique. J. Mar. Sci. Eng. 2018, 6, 133. https://doi.org/10.3390/jmse6040133
Cao J, Zhang X, Zou X. Pressure Control of Insulation Space for Liquefied Natural Gas Carrier with Nonlinear Feedback Technique. Journal of Marine Science and Engineering. 2018; 6(4):133. https://doi.org/10.3390/jmse6040133
Chicago/Turabian StyleCao, Jinghua, Xianku Zhang, and Xiang Zou. 2018. "Pressure Control of Insulation Space for Liquefied Natural Gas Carrier with Nonlinear Feedback Technique" Journal of Marine Science and Engineering 6, no. 4: 133. https://doi.org/10.3390/jmse6040133
APA StyleCao, J., Zhang, X., & Zou, X. (2018). Pressure Control of Insulation Space for Liquefied Natural Gas Carrier with Nonlinear Feedback Technique. Journal of Marine Science and Engineering, 6(4), 133. https://doi.org/10.3390/jmse6040133