Role of Upper-Flow-Regime Bedforms Emplaced by Sediment Gravity Flows in the Evolution of Deltas
Abstract
:1. Introduction
2. Summary of Knowledge to Date
2.1. What Was Learned from Studies on Mediterranean Deltas?
2.2. What Was Learned from Recent Studies on Squamish Delta?
2.3. What Was Learned from Numerical Experiments?
3. What Generates Cyclic Steps on Deltas?
4. Field Case Study 1: Mazzarrà River Delta, Italy
4.1. Setting
4.2. Materials and Methods
4.3. Results
4.3.1. Mazzarrà Deltaic System
4.3.2. Bedforms of the Mazzarrà Deltaic System
5. Field Case Study 2: Gilbert-Type Glaciolacustrine Deltas, Germany
5.1. Setting
5.2. Materials and Methods
5.3. Results
5.3.1. Ice-Marginal Deltaic Systems
5.3.2. Bedforms Emplaced by Supercritical Currents
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Galloway, W.E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In Deltas, Models for Exploration; Brousard, M.L., Ed.; Houston Geological Society: Houston, TX, USA, 1974; pp. 87–98. [Google Scholar]
- Orton, G.J.; Reading, H.G. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 1993, 40, 475–512. [Google Scholar] [CrossRef]
- Postma, G. Depositional architectures and facies of river and fan deltas. In Coarse-Grained Deltas; Special Publication 10; Colella, A., Prior, D.B., Eds.; International Association of Sedimentologists, Blackwell Scientific Publications: Oxford, UK, 1990; pp. 13–27. [Google Scholar]
- Gilbert, G.K. Lake Bonneville; Monography; U.S. Geological Survey: Washington, WA, USA, 1890; Volume 1, p. 438.
- Fisk, H.N. Bar-finger sands of the Mississippi Delta. In Geometry of Sandstone Bodies; Peterson, J.A., Osmond, J.C., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1961; pp. 29–52. [Google Scholar]
- Holmes, A. Principles of Physical Geology; Thomas Nelson: London, UK, 1965; p. 1288. [Google Scholar]
- Chough, S.K.; Hwang, I.G.; Choe, M.Y. The Miocene Domusan fan-delta, southeast Korea: A composite fan-delta system in back-arc margin. J. Sediment. Petrol. 1990, 60, 445–455. [Google Scholar]
- Friedman, G.M.; Sanders, J.E.; Kopaska-Merkel, D.C. Principles of Sedimentary Deposits—Stratigraphy and Sedimentology; Macmillan: New York, NY, USA, 1992; p. 717. [Google Scholar]
- Suter, J.R.; Berryhill, H.L. Late Quaternary shelf-margin deltas, northwest Gulf of Mexico: American Association of Petroleum Geologists. AAPG Bull. 1985, 69, 77–91. [Google Scholar]
- Postma, G. Causes of architectural variation in deltas. In Geology of Deltas; Oti, M.N., Postma, G., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1995; pp. 3–16. [Google Scholar]
- Kolla, V.; Biondi, P.; Long, B.; Fillon, R. Sequence stratigraphy and architecture of the late Pleistocene Lagniappe delta complex, northeast Gulf of Mexico. In Sedimentary Responses to Forced Regressions; Special Publication 172; Hunt, D., Gawthorpe, R.L., Eds.; Geological Society: London, UK, 2000; pp. 291–327. [Google Scholar]
- Porebski, S.J.; Steel, R.J. Shelf-margin deltas: Their stratigraphic significance and relation to deep-water sands. Earth-Sci. Rev. 2003, 62, 283–326. [Google Scholar] [CrossRef]
- Porebski, S.J.; Steel, R.J. Deltas and sea lever change. J. Sediment. Res. 2006, 76, 390. [Google Scholar] [CrossRef]
- Kostic, S.; Parker, G. The response of turbidity currents to a canyon-fan transition: Internal hydraulic jumps and depositional signatures. J. Hydraul. Res. 2006, 44, 631–653. [Google Scholar] [CrossRef]
- Kostic, S. Modeling of submarine cyclic steps: Controls on their formation, migration and architecture. Geosphere 2011, 7, 294–304. [Google Scholar] [CrossRef]
- Kostic, S. Upper flow regime bedforms on levees and continental slopes: Turbidity current flow dynamics in response to fine-grained sediment waves. Geosphere 2014, 10, 1094–1103. [Google Scholar] [CrossRef]
- Spinewine, B.; Sequeiros, O.E.; Garcia, M.H.; Beaubouef, R.T.; Sun, T.; Savoye, B.; Parker, G. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms. J. Sediment. Res. 2009, 79, 608–628. [Google Scholar] [CrossRef]
- Fildani, A.; Normark, W.R.; Kostic, S.; Parker, G. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves. Sedimentology 2006, 53, 1265–1287. [Google Scholar] [CrossRef]
- Lamb, M.P.; Parsons, J.D.; Mullenbach, B.L.; Finlayson, D.P.; Orange, D.L.; Nittrouer, C.A. Evidence for superelevation, channel incision, and formation of cyclic steps by turbidity currents in Eel Canyon, California. GSA Bull. 2008, 120, 463–475. [Google Scholar] [CrossRef]
- Covault, J.A.; Kostic, S.; Paull, C.K.; Rayan, H.F.; Fildani, A. Submarine channel initiation, filling and maintenance from seafloor geomorphology and morphodynamics modeling of cyclic steps. Sedimentology 2014, 61, 1031–1054. [Google Scholar] [CrossRef]
- Symons, W.O.; Sumner, E.J.; Talling, P.J.; Cartigny, M.J.B.; Clare, M.A. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows. Mar. Geol. 2016, 371, 130–148. [Google Scholar] [CrossRef]
- Lang, J.; Brandes, C.; Winsemann, J. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levee complexes (Sandino Forearc Basin, southern Central America). Sediment. Geol. 2017, 349, 79–102. [Google Scholar] [CrossRef]
- Covault, J.A.; Kostic, S.; Paull, C.K.; Sylvester, Z.; Fildani, A. Cyclic Steps and Related Supercritical bedforms: Building Blocks of Submarine Fans and Canyon-Channel Systems, Western North America. Mar. Geol. 2017, 393, 4–20. [Google Scholar] [CrossRef]
- Prior, D.B.; Bornhold, B.D. Submarine sedimentation on a developing Holocene fan delta. Sedimentology 1989, 36, 1053–1076. [Google Scholar] [CrossRef]
- Gilbert, R.; Crookshanks, S. Sediment waves in a modern high-energy glacilacustrine environment. Sedimentology 2009, 56, 645–659. [Google Scholar] [CrossRef]
- Urgeles, R.; Cattaneo, A.; Puig, P.; Liquete, C.; De Mol, B.; Amblas, B.; Sultan, N.; Trincardi, F. A review of undulated sediment features on Mediterranean prodeltas: Distinguishing sediment transport structures from sediment deformation. Mar. Geophys. Res. 2011, 32, 49–69. [Google Scholar] [CrossRef]
- Gallignani, P. Recent sedimentation processes on the Calabrian continental shelf and slope (Tyrrenian Sea, Italy). Oceanol. Acta 1982, 5, 493–500. [Google Scholar]
- Mougenot, D.; Buillot, G.; Rehault, J.P. Prograding shelf break types on passive margins: Some European examples. In The Shelfbrak: Critical Interface on Continental Margins; Stanley, D.J., Moore, G.T., Eds.; SEPM Special Publication: Tulsa, OK, USA, 1983; Volume 3, pp. 61–77. [Google Scholar]
- Aksu, A.E.; Piper, D.J.W. Progradation of the late Quatrnary Gediz delta. Mar. Geol. 1983, 54, 1–25. [Google Scholar] [CrossRef]
- Checa, A.; Dıaz, J.I.; Farran, M.; Maldonado, A. Sistemas deltaicos holocenos de los rıos Llobregat, Besos y Foix: Modelos evolutivos transgresivos. Acta Geol. Hisp. 1988, 23, 241–255. [Google Scholar]
- Trincardi, F.; Normark, W.R. Sediment waves on the Tiber prodelta slope. Geo-Mar. Lett. 1988, 8, 149–157. [Google Scholar] [CrossRef]
- Romagnoli, C.; Gabbianelli, G. Late Quaternary sedimentation and soft sediment deformation features in the Coriglliano Basin. North Ionian Sea (Mediterranean). Giornale di Geologia 1990, 52, 33–53. [Google Scholar]
- Ercilla, G.; Dıaz, J.I.; Alonso, B.; Farran, M. Late Pleistocene-Holocene sedimentary evolution of the northern Catalonia continental shelf (northwestern Mediterranean Sea). Cont. Shelf Res. 1995, 15, 1435–1451. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Esu, F.; Tommasi, P.; Chiappa, V. Stability of the submarine slope of the Tiber River delta. In Landslides; Senneset, K., Ed.; Balkema: Rotterdam, The Netherlands, 1996; pp. 521–526. [Google Scholar]
- Correggiari, A.; Trincardi, F.; Langone, L.; Roveri, M. Styles of failure in late Holocene highstand prodelta wedges on the Adriatic shelf. J. Sediment. Res. 2001, 71, 218–236. [Google Scholar] [CrossRef]
- Marsset, T.; Marsset, B.; Thomas, Y.; Cochonat, P.; Cattaneo, A.; Tricardi, F. Analysis of Holocene sedimentary features on the Adriatic shelf from 3D very high resolution seismic data (Triad survey). Mar. Geol. 2004, 213, 73–89. [Google Scholar] [CrossRef]
- Cattaneo, A.; Correggiari, A.; Marsset, T.; Thomas, Y.; Marsset, B.; Trincardi, F. Seafloor undulation pattern on the Adriatic shelf and comparison to deep-water sediment waves. Mar. Geol. 2004, 213, 121–148. [Google Scholar] [CrossRef]
- Fernandez-Salas, L.M.; Lobo, F.J.; Sanz, J.L.; Diaz-del-Rio, V.; Garcia, M.C.; Moreno, I. Morphometric analysis and genetic implications of pro-deltaic sea-floor undulations in the northern Alboran Sea margin, western Mediterranean Basin. Mar. Geol. 2007, 243, 31–56. [Google Scholar] [CrossRef]
- Urgeles, R.; De Mol, B.; Liquete, C.; Canals, M.; De Batist, M.; Hughes-Clarke, J.E.; Amblas, D.; Arnau, P.A.; Calafat, A.M.; Casamor, J.L.; et al. Sediment undulations on the Llobregat prodelta: Signs of early slope instability or bottom current activity? J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Lykousis, V.; Roussakis, G.; Sakellariou, D. Slope failures and stability analysis of shallow water prodeltas in the active margins of Western Greece, northeastern Mediterranean Sea. Int. J. Earth Sci. 2009, 98, 807–822. [Google Scholar] [CrossRef]
- Agate, M.; Di Grigoli, G.; Lo Iacono, C.; Lo Presti, V.; Mancuso, M.; Sulli, A.; Vaccaro, F. Decoding the instabilities features along the continental margin of Sicily (central Mediterranean Sea. Soc. Geol. 2009, 7, 99–101. [Google Scholar]
- Rebesco, M.; Neagu, R.C.; Cuppari, A.; Muto, A.; Accettella, D.; Dominici, R.; Cova, A.; Romano, C.; Caburlotto, A. Morphobathymetric analysis and evidence of submarine mass movements in the western Gulf of Taranto (Calabria margin, Ionian Sea). Int. J. Earth Sci. 2009, 98, 791–805. [Google Scholar] [CrossRef]
- Kostic, S.; Parker, G. Progradational sand-mud deltas in lakes and reservoirs, Part 2. Experiment and numerical simulation. J. Hydraul. Res. 2003, 41, 141–152. [Google Scholar] [CrossRef]
- Trincardi, F.; Cattaneo, A.; Correggiari, A. Mediterranean prodelta systems: Natural evolution and human impact investigated by EURODELTA. Oceanography 2004, 17, 34–45. [Google Scholar] [CrossRef]
- Hughes Clarke, J.E.; Brucker, S.; Muggah, J.; Church, I.; Cartwright, D.; Kuus, P.; Hamilton, T.; Pratomo, D.; Eisan, B. The Squamish ProDelta: Monitoring active landslides and turbidity currents. In Proceedings of the Canadian Hydrographic Conference, Niagara Falls, ON, Canada, 15–17 May 2012; Volume 15. [Google Scholar]
- Hughes Clarke, J.E.; Vidiera Marques, C.R.; Pratomo, D. Imaging active mass-wasting and sediment flows on a fjord delta, Squamish, British Columbia. In Submarine Mass Movements and Their Consequences; Advances in Natural and Technological Hazards Research; Krastel, S., Behrmann, J.H., Völker, D., Stipp, M., Berndt, C., Eds.; Springer: Cham, Switzerland, 2014; Volume 37, pp. 249–260. [Google Scholar]
- Hughes Clarke, J.E. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics. Nat. Commun. 2016, 7, 11896. [Google Scholar] [CrossRef]
- Casalbore, D.; Ridente, D.; Bosman, A.; Chiocci, F.L. Depositional and erosional bedforms in Late Pleistocene-Holocene pro-delta deposits of the Gulf of Patti (southern Tyrrhenian margin, Italy). Mar. Geol. 2017, 385, 216–227. [Google Scholar] [CrossRef]
- Fricke, A.T.; Sheets, B.A.; Nittrouer, C.A.; Allison, M.A.; Ogston, A.S. An examination of Froude-supercritical flows and cyclic steps on a subaqueous Lacustrine delta, Lake Chelan, Washington, USA. J. Sediment. Res. 2015, 85, 754–767. [Google Scholar] [CrossRef]
- Normandeau, A.; Lajeunesse, P.; Poiré, A.G.; Francus, P. Morphological expression of bedforms formed by supercritical sediment density flows in four fjord-lake deltas of the southeastern Canadian Shield (Eastern Canada). Sedimentology 2016, 63, 2106–2129. [Google Scholar] [CrossRef]
- Winsemann, J.; Lang, J.; Polom, U.; Loewer, M.; Igel, J.; Pollock, L.; Brandes, C. Ice-marginal forced-regressive deltas in glacial lake basins: Geomorphology, facies variability and large-scale depositional architecture. Boreas 2018, 47, 973–1002. [Google Scholar] [CrossRef]
- Cattaneo, A.; Trincardi, F.; Asioli, A.; Correggiari, A. The western Adriatic shelf clinoform: Energy-limited bottomset. Cont. Shelf Res. 2007, 27, 506–525. [Google Scholar] [CrossRef]
- Dıaz, J.I.; Ercilla, G. Holocene depositional history of the Fluvia-Muga prodelta, northwestern Mediterranean Sea. Mar. Geol. 1993, 111, 83–92. [Google Scholar] [CrossRef]
- Puig, P.; Ogston, A.S.; Guillen, J.; Fain, A.M.V.; Palanques, A. Sediment transport processes from the topset to the foreset of a crenulated clinoform (Adriatic Sea). Cont. Shelf Res. 2007, 27, 452–474. [Google Scholar] [CrossRef]
- Sultan, N.; Cochonat, P.; Canals, M.; Cattaneo, A.; Dennielou, B.; Haflidason, H.; Laberg, J.S.; Long, D.; Mienert, J.; Trincardi, F.; et al. Triggering mechanisms of slope instability processes and sediment failures on continental margins: A geotechnical approach. Mar. Geol. 2004, 213, 291–321. [Google Scholar] [CrossRef]
- Sultan, N.; Cattaneo, A.; Urgeles, R.; Lee, H.; Locat, J.; Trincardi, F.; Berne, S.; Canals, M.; Lafuerza, S. A geomechanical approach for the genesis of sediment undulations on the Adriatic shelf. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Milliman, J.D.; Syvitski, J.P.M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Syvitsky, J.P.M.; Kettner, A.J. On the flux of water and sediment into the Northern Adriatic Sea. Cont. Shelf Res. 2007, 27, 296–308. [Google Scholar] [CrossRef]
- Liquete, C.; Arnau, P.; Canals, M.; Colas, S. Mediterranean river systems of Andalusia, southern Spain, and associated deltas: A source to sink approach. Mar. Geol. 2005, 222–223, 471–495. [Google Scholar] [CrossRef]
- Benito, G.; Thorndycraft, V.R.; Rico, M.; Sanchez-Moya, Y.; Sopena, A. Palaeoflood and floodplain records from Spain: Evidence for long-term climate variability and environmental changes. Geomorphology 2008, 101, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Thorndycraft, V.R.; Benito, G.; Rico, M.; Sopena, A.; Sanchez-Moya, Y.; Casas, A. A long-term flood discharge record derived from slack-water flood deposits of the Llobregat River, NE Spain. J. Hydrol. 2005, 313, 16–31. [Google Scholar] [CrossRef]
- Wheatcroft, R.A.; Stevens, A.W.; Hunt, L.M.; Milligan, T.G. The large-scale distribution and internal geometry of the fall 2000 Po river flood deposit: Evidence from digital X-radiography. Cont. Shelf Res. 2006, 26, 499–516. [Google Scholar] [CrossRef]
- Demestre, M.; Guillen, J.; Maynou, F.; Palanques, A.; Puig, P.; Recasens, L.; Sanchez, P.; Belzunces, M.; Bucci, A.; Cruz, A.; et al. Estimacion del Impacto de las Obras del Plan Director Sobre los Recursos Pesqueros que Explota la Flota Pesquera de la Cofradıa de Barcelona. Tech. Rep. 2004, 302. [Google Scholar]
- Farrell, G.J.; Stefan, H.G. Mathematical modeling of plunging reservoir flows. J. Hydraul. Res. 1988, 26, 525–537. [Google Scholar] [CrossRef]
- Ludwig, W.; Dumont, E.; Meybeck, M.; Heussner, S. River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades? Prog. Oceanogr. 2009, 80, 199–217. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, R.; Day, J.; Vörösmarty, C.J.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Kostic, S.; Stefanovic, D. Flood-Control Levees on River Deltas: What We Have Learned from the New Orleans Hurricane Katrina Experience. In Advances in Environmental Research; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2017; Volume 56, pp. 29–48. [Google Scholar]
- Prior, D.B.; Bornhold, B.D.; Wiseman, W.J.; Lowe, D.R. Turbidity current activity in a British Columbia fjord. Science 1987, 237, 1330–1333. [Google Scholar] [CrossRef]
- University of New Brunswick, Ocean Mapping Group. Squamish Prodelta Experiment. 2011. Available online: http://www.omg.unb.ca/Projects/SQ_2011_html/ (accessed on 20 November 2018).
- Clare, M.A.; HughesClarke, J.E.; Talling, P.J.; Cartigny, M.J.B.; Pratomo, D.G. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta. Earth Planet. Sci. Lett. 2016, 450, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Cartigny, M.J.B.; Ventra, D.; Postma, G.; van den Berg, J.H. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments. Sedimentology 2014, 61, 712–748. [Google Scholar] [CrossRef]
- Carter, L.; Carter, R.M.; Nelson, C.S.; Fulthorpe, C.S.; Neil, H.L. Evolution of Pliocene to recent abyssal sediment waves on Bounty Channel levees, New Zealand. Mar. Geol. 1990, 95, 97–109. [Google Scholar] [CrossRef]
- Ercilla, G.; Wynn, R.B.; Alonso, B.; Baraza, J. Initiation and evolution of turbidity current sediment waves in the Magdalena Turbidite System. Mar. Geol. 2002, 192, 153–169. [Google Scholar] [CrossRef]
- Pemberton, E.A.L.; Hubbard, S.M.; Fildani, A.; Romans, B.; Stright, L. The stratigraphic expression of decreasing confinement along a deep-water routing sediment system: Outcrop example from southern Chile. Geosphere 2016, 12, 114–134. [Google Scholar] [CrossRef]
- Hom-Ma, M.; Shima, S. On the flow in a gradually diverged open channel. Jpn. Sci. Rev. 1952, 2, 326–346. [Google Scholar]
- Kleinhans, M.G. Autogenic cyclicity of foreset sorting in experimental Gilbert-type deltas. Sediment. Geol. 2005, 181, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Paola, C.; Swenson, J.B.; Voller, V.R. Shoreline response to autogenic processes of sediment storage and release in the fluvial system. J. Geophys. Res. 2006, 111, F04013. [Google Scholar] [CrossRef]
- Muto, T.; Yamagishi, C.; Sekiguchi, T.; Yokokawa, M.; Parker, G. The hydraulic autogenesis of distinct cyclicity in delta foreset bedding: Flume experiments. J. Sediment. Res. 2012, 82, 545–558. [Google Scholar] [CrossRef]
- Ogniben, L. Schema introduttivo alla geologia del confine calabro-lucano. Memorie della Società Geologica Italiana 1969, 8, 453–763. [Google Scholar]
- Lentini, F.; Carbone, S.; Guarnieri, P. Collisional and post-collisional tectonics of the Apenninic-Maghrebian Orogen (Southern Italy). In Postcollisional Tectonics and Magmatism in the Eastern Mediterranean Region; Special Paper; Dilek, Y., Pavlides, S., Eds.; Geological Society of America: Washington, WA, USA, 2006; Volume 409, pp. 57–81. [Google Scholar]
- CPTI Working Group. Catalogo Parametrico dei Terremoti Italiani, Version 2004 (CPTI04). INGV: Bologna, Italy. Available online: http://emidius.mi.ingv.it/CPTI (accessed on 20 November 2018).
- Chiarabba, C.; Jovane, L.; DiStefano, R. A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics 2005, 395, 251–268. [Google Scholar] [CrossRef]
- Cultrera, F.; Barreca, G.; Ferranti, L.; Monaco, C.; Pepe, F.; Passaro, S.; Barberi, G.; Bruno, V.; Burrato, P.; Mattia, M.; et al. Structural architecture and active deformation pattern in the northern sector of the Aeolian-Tindari-Letojanni fault system (SE Tyrrhenian Sea-NE Sicily) from integrated analysis of field, marine geophysical, seismological and geodetic data. Ital. J. Geosci. 2017, 136, 399–417. [Google Scholar] [CrossRef]
- Sulli, A.; Lo Presti, V.; Gasparo Morticelli, M.; Antonioli, F. Vertical movements in NE Sicily and its offshore: Outcome of tectonic uplift during the last 125 ky. Quat. Int. 2013, 288, 168–182. [Google Scholar] [CrossRef]
- Sabato, L.; Tropeano, M. Fiumara: A kind of high hazard river. Phys. Chem. Earth A/B/C 2004, 29, 707–715. [Google Scholar] [CrossRef]
- Casalbore, D.; Chiocci, F.L.; Scarascia Mugnozza, G.; Tommasi, P.; Sposato, A. Flash-flood hyperpycnal flows generating shallow-water landslides at Fiumara mouths in Western Messina Straits (Italy). Mar. Geophys. Res. 2011, 32, 257–271. [Google Scholar] [CrossRef]
- Hydro-geological Characterization of the Mazzarrà River Course. Available online: http://www.sitr.regione.sicilia.it/pai/bacini.htm (accessed on 20 November 2018).
- Istituto Idrografico della Marina. Atlante delle Correnti Superficiali dei Mari d’Italia, 1st ed.; Istituto Idrografico della Marina no. 3068: Genova, Italy, 1982. [Google Scholar]
- Paull, C.K.; Ussler, I.I.I.W.; Caress, D.W.; Lundsten, E.; Barry, J.; Covault, J.A.; Maier, K.L.; Xu, J.P.; Augenstein, S. Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon. Geosphere 2010, 6, 755–774. [Google Scholar] [CrossRef]
- Roskosch, J.; Winsemann, J.; Polom, U.; Brandes, C.; Tsukamoto, S.; Weitkamp, A.; Bartholomäus, W.A.; Henningsen, D.; Frechen, M. Luminescence dating of ice-marginal deposits in northern Germany: Evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). Boreas 2015, 44, 103–126. [Google Scholar] [CrossRef]
- Lang, J.; Lauer, T.; Winsemann, J. New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems. Quat. Sci. Rev. 2018, 180, 240–259. [Google Scholar] [CrossRef]
- Meinsen, J.; Winsemann, J.; Weitkamp, A.; Landmeyer, N.; Lenz, A.; Dölling, A. Middle Pleistocene (Saalian) lake outburst floods in the Münsterland Embayment (NW Germany): Impacts and magnitudes. Quat. Sci. Rev. 2011, 30, 2597–2625. [Google Scholar] [CrossRef]
- Winsemann, J.; Brandes, C.; Polom, U. Response of a proglacial delta to rapid high-amplitude lake level change: An integration of outcrop data and high resolution shear wave seismic. Basin Res. 2011, 23, 22–52. [Google Scholar] [CrossRef]
- Winsemann, J.; Alho, P.; Laamanen, L.; Goseberg, N.; Lang, J.; Klostermann, J. Flow dynamics, sedimentation and erosion of glacial lake outburst floods along the Middle Pleistocene Scandinavian ice sheet (northern Central Europe). Boreas 2016, 45, 260–283. [Google Scholar] [CrossRef]
- Lang, J.; Sievers, J.; Loewer, M.; Igel, J.; Winsemann, J. 3D architecture of cyclic step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data. Sediment. Geol. 2017, 362, 83–100. [Google Scholar] [CrossRef]
- Catuneanu, O.; Galloway, W.E.; Kendall, C.G.S.; Miall, A.D.; Posamentier, H.W.; Strasser, A.; Tucker, M. Sequence stratigraphy: Methodology and nomenclature. Newsl. Stratigr. 2011, 44, 173–245. [Google Scholar] [CrossRef]
- Massari, F. Supercritical-flow structures (backset-bedded sets and sediment waves) on high-gradient clinoform systems influenced by shallow-marine hydrodynamics. Sediment. Geol. 2017, 360, 73–95. [Google Scholar] [CrossRef]
- Leclair, S.F.; Arnott, R.W.C. Coarse-tail graded, structureless strata: Indicators of an internal hydraulic jump. In Shelf Margin Deltas and Linked Down Slope Petroleum Systems: Global Significance and Future Exploration Potential; Roberts, H.H., Rosen, N.C., Filion, R.H., Anderson, J.B., Eds.; SEPM: Houston, TX, USA, 2003; pp. 817–836. [Google Scholar]
- Postma, G.; Kleverlaan, K.; Cartigny, M.J.B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model. Sedimentology 2014, 61, 2268–2290. [Google Scholar] [CrossRef]
- Zhong, G.; Cartigny, M.J.B.; Kuang, Z.; Wang, L. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea. Geol. Soc. Am. Bull. 2015, 127, 804–824. [Google Scholar] [CrossRef]
- Ventra, D.; Cartigny, M.J.B.; Bijkerk, J.F.; Acikalin, S. Supercritical-flow structures on a Late Carboniferous delta front: Sedimentological and paleoclimatic significance. Geology 2015, 43, 731–734. [Google Scholar] [CrossRef]
- Lang, J.; Winsemann, J. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes. Sediment. Geol. 2013, 296, 36–54. [Google Scholar] [CrossRef]
- Fielding, C.R. Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies. Sediment. Geol. 2006, 190, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Kostic, S.; Smith, I.B. Water on Mars: Do submarine cyclic steps exist on the Red Planet? Prog. Earth Planet. Sci. 2018, 5, 76. [Google Scholar] [CrossRef]
- Parsons, J.D.; Bush, J.W.M.; Syvitski, J.P.M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentology 2001, 48, 465–478. [Google Scholar] [CrossRef]
- Mulder, T.; Syvitski, J.P.M.; Migeon, S.; Faugeres, J.C.; Savoye, B. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Mar. Pet. Geol. 2003, 20, 861–882. [Google Scholar] [CrossRef]
- Carter, L.; Gavey, R.; Talling, P.; Liu, J. Insights into submarine geohazards from breaks in subsea telecommunication cables. Oceanography 2014, 27, 58–67. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Casalbore, D. Submarine gullies on Italian upper slopes and their relationship with volcanic activity revisited 20 years after Bill Normark’s pioneering work. Geosphere 2011, 7, 1284–1293. [Google Scholar] [CrossRef]
- Gamberi, F.; Rovere, M.; Mercorella, A.; Leidi, E.; Dalla Valle, G. Geomorphology of the NE Sicily continental shelf controlled by tidal currents, canyon head incision and river-derived sediments. Geomorphology 2014, 217, 106–121. [Google Scholar] [CrossRef]
- Martorelli, E.; Bosman, A.; Casalbore, D.; Falcini, F. Interaction of down-slope and along-slope processes off Capo Vaticano (southern Tyrrhenian Sea, Italy), with particular reference to contourite-related landslides. Mar. Geol. 2016, 378, 43–55. [Google Scholar] [CrossRef]
- Mulder, T.; Syvitski, J.P.M. Turbidity currents generated at mouths of rivers during exceptional discharges to the world oceans. J. Geol. 1995, 103, 285–299. [Google Scholar] [CrossRef]
- Plink-Björklund, P.; Steel, R.J. Initiation of turbidity currents: Outcrop evidence of hyperpycnal flow turbidites. Sediment. Geol. 2004, 165, 29–52. [Google Scholar] [CrossRef]
- Ghienne, J.F.; Girad, F.; Moreau, J.; Rubino, J.L. Late ordovician climbing dune assemblages: A signature of outburst flood in proglacial outwash environments. Sedimentology 2010, 57, 1175–1198. [Google Scholar]
- Mulder, T.; Alexander, J. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 2001, 48, 269–299. [Google Scholar] [CrossRef]
- Jopling, A.V. Hydraulic factors controlling the shape of lamina in laboratory deltas. J. Sediment. Petrol. 1965, 35, 777–791. [Google Scholar]
- Marren, P.M. Magnitude and frequency in proglacial rivers: A geomorphological and sedimentological perspective. Earth-Sci. Rev. 2005, 70, 203–251. [Google Scholar] [CrossRef]
Delta | Prodelta | Bedform | Mixing | Flow | Ratio | |||
---|---|---|---|---|---|---|---|---|
Slope | Wavelenght L (m) a | Coefficient | Depth | L/H | ||||
Sa | Min | Max | Avg | γb | H (m) b | Min | Max | |
Verde | 0.087 | 38 | 103 | 73 | 1.27 | 4.6 | 8.2 | 22.3 |
Seco | 0.070 | 25 | 74 | 46 | 1.13 | 1.6 | 15.9 | 47.0 |
Guadalfeo | 0.044 | 19 | 252 | 80 | 0.86 | 5.5 | 3.4 | 45.6 |
Gulachos | 0.065 | 19 | 140 | 53 | 1.08 | 6.9 | 2.8 | 20.4 |
Albunol | 0.079 | 23 | 163 | 61 | 1.21 | 4.7 | 4.9 | 35.0 |
Adra | 0.054 | 21 | 244 | 76 | 0.97 | 9.7 | 2.2 | 25.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostic, S.; Casalbore, D.; Chiocci, F.; Lang, J.; Winsemann, J. Role of Upper-Flow-Regime Bedforms Emplaced by Sediment Gravity Flows in the Evolution of Deltas. J. Mar. Sci. Eng. 2019, 7, 5. https://doi.org/10.3390/jmse7010005
Kostic S, Casalbore D, Chiocci F, Lang J, Winsemann J. Role of Upper-Flow-Regime Bedforms Emplaced by Sediment Gravity Flows in the Evolution of Deltas. Journal of Marine Science and Engineering. 2019; 7(1):5. https://doi.org/10.3390/jmse7010005
Chicago/Turabian StyleKostic, Svetlana, Daniele Casalbore, Francesco Chiocci, Jörg Lang, and Jutta Winsemann. 2019. "Role of Upper-Flow-Regime Bedforms Emplaced by Sediment Gravity Flows in the Evolution of Deltas" Journal of Marine Science and Engineering 7, no. 1: 5. https://doi.org/10.3390/jmse7010005
APA StyleKostic, S., Casalbore, D., Chiocci, F., Lang, J., & Winsemann, J. (2019). Role of Upper-Flow-Regime Bedforms Emplaced by Sediment Gravity Flows in the Evolution of Deltas. Journal of Marine Science and Engineering, 7(1), 5. https://doi.org/10.3390/jmse7010005