A Numerical Investigation of a Winglet-Propeller Using an LES Model
Abstract
:1. Introduction
2. Models and Methods
2.1. Geometric Model
2.2. Mesh Quality
2.3. Modeling Physics
3. Results and Discussion
3.1. Power Spectral Density (PSD)
3.2. Tip Vortex Wake
3.3. Cavitation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.H.; Seo, J.S. Application of spectral kurtosis to the detection of tip vortex cavitation noise in marine propeller. Mech. Syst. Signal Proc. 2013, 40, 222–236. [Google Scholar] [CrossRef]
- Gaggero, S.; Tani, G.; Viviani, M.; Conti, F. A study on the numerical prediction of propellers cavitating tip vortex. Ocean Eng. 2014, 92, 137–161. [Google Scholar] [CrossRef]
- Felli, M.; Falchi, M. Propeller tip and hub vortex dynamics in the interaction with a rudder. Exp. Fluids 2011, 51, 1385–1402. [Google Scholar] [CrossRef] [Green Version]
- Felli, M.; Falchi, M. Propeller wake evolution mechanisms in oblique flow conditions. J. Fluid Mech. 2018, 845, 520–559. [Google Scholar] [CrossRef]
- Muscari, R.; Dubbioso, G.; Di Mascio, A. Analysis of the flow field around a rudder in the wake of a simplified marine propeller. J. Fluid Mech. 2017, 814, 547–569. [Google Scholar] [CrossRef]
- Zhu, Z. Characteristic correlation between propellers cavitating wake and cavitation noise. Appl. Acoust. 2014, 81, 31–39. [Google Scholar] [CrossRef]
- Baek, D.G.; Yoon, H.S.; Jung, J.H.; Kim, K.S.; Paik, B.G. Effects of the advance ratio on the evolution of a propeller wake. Comput. Fluids 2015, 118, 32–43. [Google Scholar] [CrossRef]
- Zhu, W.; Gao, H.; Song, Y. Numerical investigation of propeller noise from tip vortex cavitation. In Proceedings of the 36th ASME International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June 2017. [Google Scholar]
- Asnaghi, A.; Svennberg, U.; Bensow, R.E. Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers. Appl. Ocean Res. 2018, 79, 197–214. [Google Scholar] [CrossRef]
- Asnaghi, A.; Svennberg, U.; Bensow, R.E. Analysis of tip vortex inception prediction methods. Ocean Eng. 2018, 167, 187–203. [Google Scholar] [CrossRef]
- Viitanen, V.; Hynninen, A.; Sipilä, T.; Siikonen, T. DDES of wetted and cavitating marine propeller for CHA underwater noise assessment. J. Mar. Sci. Eng. 2018, 6, 56. [Google Scholar] [CrossRef]
- Yilmaz, N.; Atlar, M.; Khorasanchi, M. An improved Mesh Adaption and Refinement approach to Cavitation Simulation (MARCS) of propellers. Ocean Eng. 2019, 171, 139–150. [Google Scholar] [CrossRef]
- Posa, A.; Broglia, R.; Felli, M.; Falchi, M.; Balaras, E. Characterization of the wake of a submarine propeller via Large-Eddy simulation. Comput. Fluids 2019, 184, 138–152. [Google Scholar] [CrossRef]
- Zhang, Q.; Jaiman, R.K. Numerical analysis on the wake dynamics of a ducted propeller. Ocean Eng. 2019, 171, 202–224. [Google Scholar] [CrossRef]
- Chang, N.; Ganesh, H.; Yakushiji, R.; Ceccio, S.L. Tip vortex cavitation suppression by active mass injection. J. Fluids Eng. 2011, 133, 111301. [Google Scholar] [CrossRef]
- Lee, C.S.; Ahn, B.K.; Han, J.M.; Kim, J.H. Propeller tip vortex cavitation control and induced noise suppression by water injection. J. Mar. Sci. Technol. 2018, 23, 453–463. [Google Scholar] [CrossRef]
- Lee, S.J.; Shin, J.W.; Arndt, R.E.; Suh, J.C. Attenuation of the tip vortex flow using a flexible thread. Exp. Fluids 2018, 59, 23. [Google Scholar] [CrossRef]
- Amini, A.; Reclari, M.; Sano, T.; Iino, M.; Dreyer, M.; Farhat, M. On the physical mechanism of tip vortex cavitation hysteresis. Exp. Fluids 2019, 60, 118. [Google Scholar] [CrossRef]
- Gao, H.; Zhu, W. Numerical investigation of bionic rudder with leading-edge protuberances. J. Offshore Mech. Arct. Eng. 2020, 142, 011802. [Google Scholar] [CrossRef]
- Zaky, M.; Sano, M.; Yasukawa, H. Improvement of maneuverability in a VLCC by a high lift rudder. Ocean Eng. 2018, 165, 438–449. [Google Scholar] [CrossRef]
- Busch, J.; Barthlott, W.; Brede, M.; Terlau, W.; Mail, M. Bionics and green technology in maritime shipping: An assessment of the effect of Salvinia air-layer hull coatings for drag and fuel reduction. Philos. Trans. R. Soc. A 2018, 377, 20180263. [Google Scholar] [CrossRef]
- Ghassemi, H.; Gorji, M.; Mohammadi, J. Effect of tip rake angle on the hydrodynamic characteristics and sound pressure level around the marine propeller. Ships Offshore Struc. 2018, 13, 759–768. [Google Scholar] [CrossRef]
- Gao, H.; Zhu, W.; Liu, Y.; Yan, Y. Effect of various winglets on the performance of marine propeller. Appl. Ocean Res. 2019, 86, 246–256. [Google Scholar] [CrossRef]
- Muscari, R.; Di Mascio, A.; Verzicco, R. Modeling of vortex dynamics in the wake of a marine propeller. Comput. Fluids 2013, 73, 65–79. [Google Scholar] [CrossRef]
- Yazaki, A.; Takahashi, M.; Minakata, J. Open water test series of modified AU-type five-bladed propeller models of area ratio 0.80. J. Zosen Kiokai 1967, 122, 77–80. [Google Scholar] [CrossRef]
- Tsuchida, K.; Yazaki, A.; Takahashi, M. Open water test series with modern five-bladed propeller models. J. Zosen Kiokai 1957, 102, 110–114. [Google Scholar] [CrossRef]
- Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008, 130, 1–4. [Google Scholar]
- Mizzi, K.; Demirel, Y.K.; Banks, C.; Turan, O.; Kaklis, P.; Atlar, M. Design optimisation of Propeller Boss Cap Fins for enhanced propeller performance. Appl. Ocean Res. 2017, 62, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Asnaghi, A.; Svennberg, U.; Bensow, R.E. Evaluation of curvature correction methods for tip vortex prediction in SST k−ω turbulence model framework. Int. J. Heat Fluid Flow 2019, 75, 135–152. [Google Scholar] [CrossRef]
- Lu, N.X.; Bensow, R.E.; Bark, G. Large eddy simulation of cavitation development on highly skewed propellers. J. Mar. Sci. Technol. 2014, 19, 197–214. [Google Scholar] [CrossRef]
- Bensow, R.E. Large eddy simulation of a cavitating propeller operating in behind conditions with and without pre-swirl stators. In Proceedings of the 4th International Symposium on Marine Propulsors, Austin, TX, USA, 4 June 2015. [Google Scholar]
- Kumar, P.; Mahesh, K. Large eddy simulation of propeller wake instabilities. J. Fluid Mech. 2017, 814, 361–396. [Google Scholar] [CrossRef]
- Schnerr, G.H.; Sauer, J. Physical and numerical modeling of unsteady cavitation dynamics. In Proceedings of the Fourth International Conference on Multiphase Flow, New Orleans, LA, USA, 27 May–1 June 2001. [Google Scholar]
- Li, Z.; Terwisga, T. On the capability of multiphase RANS codes to predict cavitation erosion. In Proceedings of the Second International Symposium on Marine Propulsors, Hamburg, Germany, 15–17 June 2011. [Google Scholar]
- Pereira, F.A.; Di Felice, F.; Salvatore, F. Propeller cavitation in non-uniform flow and correlation with the near pressure field. J. Mar. Sci. Eng. 2016, 4, 70. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, T.; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G. Experimental investigation of the impact of a propeller on a streamwise impinging vortex. Aerosp. Sci. Technol. 2017, 69, 582–594. [Google Scholar] [CrossRef]
- Usta, O.; Korkut, E. A study for cavitating flow analysis using DES model. Ocean Eng. 2018, 160, 397–411. [Google Scholar] [CrossRef]
- Felli, M.; Roberto, C.; Di Felice, F. Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 2011, 682, 5–53. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Guo, C.Y.; Zhao, D.G.; Wu, T.C.; Song, K.W. A comparative DES study of wake vortex evolution for ducted and non-ducted propellers. Ocean Eng. 2018, 160, 78–93. [Google Scholar] [CrossRef]
- Zhu, Z. Numerical study on characteristic correlation between cavitating flow and skew of ship propellers. Ocean Eng. 2015, 99, 63–71. [Google Scholar] [CrossRef]
- Vysohlid, M.; Mahesh, K. Large eddy simulation of crashback in marine propellers. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
Area Ratio | Hub Ratio | Pitch Ratio | Rotating n [rps] | Diameter [m] |
---|---|---|---|---|
0.8 | 0.18 | 1.0 | 25 | 0.25 |
Mesh Type | Blade Mesh (Minimum) | Blade Mesh (Target) | Refine Propeller Wake | Refine Blade Tip | Mesh Numbers |
---|---|---|---|---|---|
Fine | 0.05D% | 0.5D% | 0.75D% | 0.375D% | 11.12 M |
Medium | 0.05D% | 0.5D% | 1.5D% | - | 6.05 M |
Coarse | 0.05D% | 2.0D% | - | - | 3.38 M |
Parameter | Vvap/D3 | KT | 10KQ |
---|---|---|---|
1.2249 | 1.2249 | 1.2249 | |
1.2142 | 1.2142 | 1.2142 | |
1.36 × 10−5 | 0.2078 | 0.3434 | |
1.34 × 10−5 | 0.2074 | 0.3430 | |
1.23 × 10−5 | 0.2066 | 0.3415 | |
0.1818 | 0.5000 | 0.2667 | |
8.8685 | 3.7267 | 6.9179 | |
1.36 × 10−5 | 0.2082 | 0.3435 | |
1.47% | 0.19% | 0.12% | |
0.29% | 0.17% | 0.04% | |
0.36% | 0.21% | 0.05% |
Tested time step | 5 × 10−5 s | 1 × 10−4 s | 2 × 10−4 s | 4 × 10−4 s |
Revolution angle | 0.45° | 0.9° | 1.8° | 3.6° |
Advance Coefficient | KT | Error | 10KQ | Error | η | Error |
---|---|---|---|---|---|---|
J = 0.6 (Test) | 0.2463 | - | 0.4089 | - | 0.5755 | - |
J = 0.6 (CFD) | 0.2581 | 4.8% | 0.4115 | 0.64% | 0.5990 | 4.1% |
J = 0.7 (Test) | 0.1989 | - | 0.3465 | - | 0.6396 | - |
J = 0.7 (CFD) | 0.2078 | 4.5% | 0.3434 | −0.89% | 0.6740 | 5.4% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Gao, H. A Numerical Investigation of a Winglet-Propeller Using an LES Model. J. Mar. Sci. Eng. 2019, 7, 333. https://doi.org/10.3390/jmse7100333
Zhu W, Gao H. A Numerical Investigation of a Winglet-Propeller Using an LES Model. Journal of Marine Science and Engineering. 2019; 7(10):333. https://doi.org/10.3390/jmse7100333
Chicago/Turabian StyleZhu, Wencai, and Hongtao Gao. 2019. "A Numerical Investigation of a Winglet-Propeller Using an LES Model" Journal of Marine Science and Engineering 7, no. 10: 333. https://doi.org/10.3390/jmse7100333
APA StyleZhu, W., & Gao, H. (2019). A Numerical Investigation of a Winglet-Propeller Using an LES Model. Journal of Marine Science and Engineering, 7(10), 333. https://doi.org/10.3390/jmse7100333