Coastal Boulder Deposits of the Neogene World: A Synopsis
Abstract
:1. Introduction
2. Conceptual Basis
2.1. Terminology
2.2. Stratigraphical Framework
3. Bibliographical Synopsis
3.1. Research Foci
3.2. Further Inferences
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Blair, T.C.; McPherson, J.G. Grain-size and textural classification of coarse sedimentary particles. J. Sediment. Res. 1999, 69, 6–19. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Bruno, D.E.; Ruban, D.A. Something more than boulders: A geological comment on the nomenclature of megaclasts on extraterrestrial bodies. Planet. Space Sci. 2017, 135, 37–42. [Google Scholar] [CrossRef]
- Terry, J.P.; Goff, J. Megaclasts: Proposed revised nomenclature at the coarse end of the Udden-Wentworth grain-size scale for sedimentary particles. J. Sediment. Res. 2014, 84, 192–197. [Google Scholar] [CrossRef]
- Autret, R.; Dodet, G.; Suanez, S.; Roudaut, G.; Fichaut, B. Long–term variability of supratidal coastal boulder activation in Brittany (France). Geomorphology 2018, 304, 184–200. [Google Scholar] [CrossRef]
- Bhatt, N.; Murari, M.K.; Ukey, V.; Prizomwala, S.P.; Singhvi, A.K. Geological evidences of extreme waves along the Gujarat coast of western India. Nat. Hazards 2016, 84, 1685–1704. [Google Scholar] [CrossRef]
- Biolchi, S.; Furlani, S.; Devoto, S.; Scicchitano, G.; Korbar, T.; Vilibic, I.; Sepic, J. The origin and dynamics of coastal boulders in a semi-enclosed shallow basin: A northern Adriatic case study. Mar. Geol. 2019, 411, 62–77. [Google Scholar] [CrossRef]
- Cox, R.; Lopes, W.A.; Jahn, K.L. Quantitative roundness analysis of coastal boulder deposits. Mar. Geol. 2018, 396, 114–141. [Google Scholar] [CrossRef]
- Cox, R.; Jahn, K.L.; Watkins, O.G.; Cox, P. Extraordinary boulder transport by storm waves (west of Ireland, winter 2013–2014), and criteria for analysing coastal boulder deposits. Earth Sci. Rev. 2018, 177, 623–636. [Google Scholar] [CrossRef]
- Cox, R.; O’Boyle, L.; Cytrynbaum, J. Imbricated Coastal Boulder Deposits are Formed by Storm Waves, and Can Preserve a Long-Term Storminess Record. Sci. Rep. 2019, 9, 10784. [Google Scholar] [CrossRef]
- Dawson, A. The geological significance of tsunamis. Z. Fur Geomorphol. Suppl. 1996, 102, 199–210. [Google Scholar]
- Engel, M.; Oetjen, J.; May, S.M.; Bruckner, H. Tsunami deposits of the Caribbean – Towards an improved coastal hazard assessment. Earth Sci. Rev. 2016, 163, 260–296. [Google Scholar] [CrossRef]
- Erdmann, W.; Scheffers, A.M.; Kelletat, D.H. Holocene Coastal Sedimentation in a Rocky Environment: Geomorphological Evidence from the Aran Islands and Galway Bay (Western Ireland). J. Coast. Res. 2018, 34, 772–792. [Google Scholar] [CrossRef]
- Hearty, P.J.; Tormey, B.R. Sea-level change and superstorms; geologic evidence from the last interglacial (MIS 5e) in the Bahamas and Bermuda offers ominous prospects for a warming Earth. Mar. Geol. 2017, 390, 347–365. [Google Scholar] [CrossRef]
- Herterich, J.G.; Cox, R.; Dias, F. How does wave impact generate large boulders? Modelling hydraulic fracture of cliffs and shore platforms. Mar. Geol. 2018, 399, 34–46. [Google Scholar] [CrossRef]
- Hongo, C.; Kurihara, H.; Golbuu, Y. Coral boulders on Melekeok reef in the Palau Islands: An indicator of wave activity associated with tropical cyclones. Mar. Geol. 2018, 399, 14–22. [Google Scholar] [CrossRef]
- Johnson, M.E.; Ledesma-Vazquez, J.; Guardado-France, R. Coastal Geomorphology of a Holocene Hurricane Deposits on a Pleistocene Marine Terrace from Isla Carmen (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2018, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Guardado-France, R.; Johnson, E.M.; Ledesma-Vazquez, J. Geomorphology of a Holocene Hurricane Deposit Eroded from Rhyolite Sea Cliffs on Ensenada Almeja (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2019, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, D.M.; Woods, J.L.D.; Naylor, L.A.; Hansom, J.D.; Rosser, N.J. Intertidal boulder-based wave hindcasting can underestimate wave size: Evidence from Yorkshire, UK. Mar. Geol. 2019, 411, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Kortekaas, S.; Dawson, A.G. Distinguishing tsunami and storm deposits: An example from Martinhal, SW Portugal. Sediment. Geol. 2007, 200, 208–221. [Google Scholar] [CrossRef]
- Lau, A.Y.A.; Terry, J.P.; Ziegler, A.; Pratap, A.; Harris, D. Boulder emplacement and remobilisation by cyclone and submarine landslide tsunami waves near Suva City, Fiji. Sediment. Geol. 2018, 364, 242–257. [Google Scholar] [CrossRef]
- Olsen, M.J.; Johnstone, E.; Driscoll, N.; Kuester, F.; Ashford, S.A. Fate and transport of seacliff failure sediment in southern California. J. Coast. Res. 2016, 76, 185–199. [Google Scholar] [CrossRef]
- Paris, R.; Naylor, L.A.; Stephenson, W.J. Boulders as a signature of storms on rock coasts. Mar. Geol. 2011, 283, 1–11. [Google Scholar] [CrossRef]
- Pepe, F.; Corradino, M.; Parrino, N.; Besio, G.; Presti, V.L.; Renda, P.; Calcagnile, L.; Quarta, G.; Sulli, A.; Antonioli, F. Boulder coastal deposits at Favignana Island rocky coast (Sicily, Italy): Litho-structural and hydrodynamic control. Geomorphology 2018, 303, 191–209. [Google Scholar] [CrossRef]
- Scheffers, A.; Kelletat, D.; Haslett, S.; Scheffers, S.; Browne, T. Coastal boulder deposits in Galway Bay and the Aran Islands, western Ireland. Z. Fur Geomorphol. 2010, 54, 247–279. [Google Scholar] [CrossRef]
- Schneider, B.; Hoffmann, G.; Falkenroth, M.; Grade, J. Tsunami and storm sediments in Oman: Characterizing extreme wave deposits using terrestrial laser scanning. J. Coast. Conserv. 2019, 23, 801–815. [Google Scholar] [CrossRef]
- Shah-Hosseini, M.; Saleem, A.; Mahmoud, A.-M.A.; Morhange, C. Coastal boulder deposits attesting to large wave impacts on the Mediterranean coast of Egypt. Nat. Hazards 2016, 83, 849–865. [Google Scholar] [CrossRef]
- Suanez, S.; Fichaut, B.; Magne, R. Cliff-top storm deposits on Banneg Island, Brittany, France: Effects of giant waves in the Eastern Atlantic Ocean. Sediment. Geol. 2009, 220, 12–28. [Google Scholar] [CrossRef]
- Terry, J.P.; Goff, J. Strongly aligned coastal boulders on Ko Larn island (Thailand): A proxy for past typhoon-driven high-energy wave events in the Bay of Bangkok. Geogr. Res. 2019, 57, 344–358. [Google Scholar] [CrossRef]
- Terry, J.P.; Goff, J.; Jankaew, K. Major typhoon phases in the upper Gulf of Thailand over the last 1.5 millennia, determined from coastal deposits on rock islands. Quat. Int.
- Trenhaile, A. Rocky coasts–Their role as depositional environments. Earth Sci. Rev. 2016, 159, 1–13. [Google Scholar] [CrossRef]
- Watanabe, M.; Goto, K.; Imamura, F.; Hongo, C. Numerical identification of tsunami boulders and estimation of local tsunami size at Ibaruma reef of Ishigaki Island, Japan. Isl. Arc 2016, 25, 316–332. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.; Sheremet, A. Toward a new paradigm for boulder dislodgement during storms. Geochem. Geophys. Geosyst. 2017, 18, 2717–2726. [Google Scholar] [CrossRef]
- Lay, T.; Kanamori, H.; Ammon, C.J.; Nettles, M.; Ward, S.N.; Aster, R.C.; Beck, S.L.; Bilek, S.L.; Brudzinski, M.R.; Butler, R.; et al. The great Sumatra-Andaman earthquake of 26 December 2004. Science 2005, 308, 1127–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, M.; Minson, S.E.; Sladen, A.; Ortega, F.; Jiang, J.; Owen, S.E.; Meng, L.; Ampuero, J.-P.; Wei, S.; Chu, R.; et al. The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science 2011, 332, 1421–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruban, D.A. Research in tsunami-related sedimentology during 2001–2010: Can a single natural disaster re-shape the science? GeoActa 2011, 10, 79–85. [Google Scholar]
- Fernandez, K.V. Critically reviewing literature: A tutorial for new researchers. Australas. Mark. J. 2019, 27, 187–196. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, A.; Salo, J. A bibliometric analysis of extended key account management literature. Ind. Mark. Manag. 2019, 82, 276–292. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Ruban, D.A.; Ponedelnik, A.A.; Yashalova, N.N. Megaclasts: Term Use and Relevant Biases. Geosciences 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Dewey, J.F.; Ryan, P.D. Storm, rogue wave, or tsunami origin for megaclast deposits in Western Ireland and North Island, New Zealand? Proc. Natl. Acad. Sci. USA 2017, 114, E10639–E10647. [Google Scholar] [CrossRef] [Green Version]
- International Commission on Stratigraphy. International Chronostratigraphic Chart 2019. Available online: Stratigraphy.org (accessed on 18 October 2019).
- Aguirre, J.; Jimenez, A.P. Census assemblages in hard-bottom coastal communities: A case study from the Plio-Pleistocene Mediterranean. Palaios 1997, 12, 598–608. [Google Scholar] [CrossRef]
- Allen, S.R.; Hayward, B.W.; Mathews, E. A facies model for a submarine volcaniclastic apron: The Miocene Manukau Subgroup, New Zealand. Bull. Geol. Soc. Am. 2007, 119, 725–742. [Google Scholar] [CrossRef]
- Cantalamessa, G.; Di Celma, C. Sedimentary features of tsunami backwash deposits in a shallow marine Miocene setting, Mejillones Peninsula, northern Chile. Sediment. Geol. 2005, 178, 259–273. [Google Scholar] [CrossRef]
- Edwards, J.; Cayley, R.A.; Joyce, E.B. Geology and geomorphology of the Lady Julia Percy Island volcano, a Late Miocene submarine and subaerial volcano off the coast of Victoria, Australia. Proc. R. Soc. Vic. 2004, 116, 15–35. [Google Scholar]
- Emhoff, K.F.; Johnson, M.E.; Backus, D.H.; Ledesma-Vazquez, J. Pliocene stratigraphy at paredones blancos: Significance of a massive crushed-rhodolith deposit on Isla Cerralvo, baja California sur (Mexico). J. Coast. Res. 2012, 28, 234–243. [Google Scholar] [CrossRef]
- Gutierrez-Mas, J.M.; Mas, R. Record of very high energy events in Plio-Pleistocene marine deposits of the Gulf of Cadiz (SW Spain): Facies and processes. Facies 2013, 59, 679–701. [Google Scholar] [CrossRef]
- Hanken, N.-M.; Bromley, R.G.; Miller, J. Plio-Pleistocene sedimentation in coastal grabens, north-east Rhodes, Greece. Geol. J. 1996, 31, 393–418. [Google Scholar] [CrossRef]
- Hartley, A.; Howell, J.; Mather, A.E.; Chong, G. A possible Plio-Pleistocene tsunami deposit, Hornitos, Northern Chile. Rev. Geol. Chile 2001, 28, 117–125. [Google Scholar] [CrossRef]
- Hood, S.D.; Nelson, C.S. Temperate carbonate debrites and short-lived earliest Miocene yo-yo tectonics, eastern Taranaki Basin margin, New Zealand. Sediment. Geol. 2012, 247–248, 58–70. [Google Scholar] [CrossRef]
- Johnson, M.E. Uniformitarianism as a guide to rocky-shore ecosystems in the geological record. Can. J. Earth Sci. 2006, 43, 1119–1147. [Google Scholar] [CrossRef]
- Johnson, M.E.; da Silva, C.M.; Santos, A.; Baarli, B.G.; Cachao, M.; Mayoral, E.J.; Rebelo, A.C.; Ledesma-Vazquez, J. Rhodolith transport and immobilization on a volcanically active rocky shore: Middle Miocene at Cabeco das Laranjas on Ilheu de Cima (Madeira Archipelago, Portugal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 300, 113–127. [Google Scholar] [CrossRef]
- Johnson, M.E.; Perez, D.M.; Baarli, B.G. Rhodolith stranding event on a Pliocene rocky shore from Isla Cerralvo in the lower Gulf of California (Mexico). J. Coast. Res. 2012, 28, 225–233. [Google Scholar] [CrossRef]
- Le Roux, J.P.; Gomez, C.; Fenner, J.; Middleton, H. Sedimentological processes in a scarp-controlled rocky shoreline to upper continental slope environment, as revealed by unusual sedimentary features in the Neogene Coquimbo Formation, north-central Chile. Sediment. Geol. 2004, 165, 67–92. [Google Scholar] [CrossRef]
- Roberts, D.L.; Brink, J.S. Dating and correlation of Neogene coastal deposits in the Western Cape (South Africa): Implications for neotectonism. S. Afr. J. Geol. 2002, 105, 337–352. [Google Scholar] [CrossRef]
- Rodriguez-Tovar, F.J.; Uchman, A.; Puga-Bernabeu, A. Borings in gneiss boulders in the Miocene (Upper Tortonian) of the Sorbas basin, SE Spain. Geol. Mag. 2015, 152, 287–297. [Google Scholar] [CrossRef]
- Shiki, T.; Yamazaki, T. Tsunami-induced conglomerates in Miocene upper bathyal deposits, Chita Peninsula, central Japan. Sediment. Geol. 1996, 104, 175–188. [Google Scholar] [CrossRef]
- Tachibana, T.; Tsuji, Y. Geological and hydrodynamical examination of the bathyal tsunamigenic origin of miocene conglomerates in Chita peninsula, Central Japan. Pure Appl. Geophys. 2011, 168, 997–1014. [Google Scholar] [CrossRef]
- Watkins, R. Sedimentology and paleoecology of Pliocene shallow marine conglomerates, Salton Trough region, California. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1992, 95, 319–333. [Google Scholar] [CrossRef]
- Wesselingh, F.P.; Peters, W.J.M.; Munsterman, D.K. A brachiopod-dominated sea-floor assemblage from the Late Pliocene of the eastern Netherlands. Neth. J. Geosci. 2013, 92, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Winn, R.D., Jr.; Pousai, P. Synorogenic alluvial-fan—Fan-delta deposition in the Papuan foreland basin: Plio-Pleistocene Era Formation, Papua New Guinea. Aust. J. Earth Sci. 2010, 57, 507–523. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Brierley, C.M.; Emanuel, K. Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature 2010, 463, 1066–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.E.; Uchman, A.; Costa, P.J.M.; Ramalho, R.S.; Ávila, S.P. Intense hurricane transports sand onshore: Example from the Pliocene Malbusca section on Santa Maria Island (Azores, Portugal). Mar. Geol. 2017, 385, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Wei, T.; Korty, R.L.; Kossin, J.P.; Zhang, Z.; Wang, H. Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period. Proc. Natl. Acad. Sci. USA 2016, 113, 12963–12967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betzler, C.; Eberli, G.P.; Lüdmann, T.; Reolid, J.; Kroon, D.; Reijmer, J.J.G.; Swart, P.K.; Wright, J.; Young, J.R.; Alvarez-Zarikian, C.; et al. Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean). Prog. Earth Planet. Sci. 2018, 5, 5. [Google Scholar] [CrossRef]
- Dumitru, O.A.; Austermann, J.; Polyak, V.J.; Fornós, J.J.; Asmerom, Y.; Ginés, J.; Ginés, A.; Onac, B.P. Constraints on global mean sea level during Pliocene warmth. Nature 2019, 574, 233–236. [Google Scholar] [CrossRef]
- Grant, G.R.; Naish, T.R.; Dunbar, G.B.; Stocchi, P.; Kominz, M.A.; Kamp, P.J.J.; Tapia, C.A.; McKay, R.M.; Levy, R.H.; Patterson, M.O. The amplitude and origin of sea-level variability during the Pliocene epoch. Nature 2019, 574, 237–241. [Google Scholar] [CrossRef]
- Kominz, M.A.; Browning, J.W.; Miller, K.G.; Sugarman, P.J.; Mizintseva, S.; Scotese, C.R. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Res. 2008, 20, 211–226. [Google Scholar] [CrossRef]
- Raymo, M.E.; Mitrovica, J.X.; O’Leary, M.J.; Deconto, R.M.; Hearty, P.J. Departures from eustasy in Pliocene sea-level records. Nat. Geosci. 2011, 4, 328–332. [Google Scholar] [CrossRef]
- Raymo, M.E.; Kozdon, R.; Evans, D.; Lisiecki, L.; Ford, H.L. The accuracy of mid-Pliocene d18O-based ice volume and sea level reconstructions. Earth Sci. Rev. 2018, 177, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Causon Deguara, J.; Scerri, S. Ras il-Gebel: An extreme wave-generated bouldered coast at Xghajra (Malta). World Geomorphol. Landsc. 2019, 229–243. [Google Scholar]
- Roig-Munar, F.X.; Rodríguez-Perea, A.; Martín-Prieto, J.A.; Gelabert, B.; Vilaplana, J.M. Tsunami boulders on the rocky coasts of Ibiza and Formentera (Balearic Islands). J. Mar. Sci. Eng. 2019, 7, 327. [Google Scholar] [CrossRef] [Green Version]
- Scheffers, A.; Scheffers, S. Tsunami deposits on the coastline of west Crete (Greece). Earth Planet. Sci. Lett. 2007, 259, 613–624. [Google Scholar] [CrossRef]
- Vacchi, M.; Rovere, A.; Zouros, N.; Firpo, M. Assessing enigmatic boulder deposits in NE Aegean Sea: Importance of historical sources as tool to support hydrodynamic equations. Nat. Hazards Earth Syst. Sci. 2012, 12, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Piscitelli, A.; Milella, M.; Hippolyte, J.-C.; Shah-Hosseini, M.; Morhange, C.; Mastronuzzi, G. Numerical approach to the study of coastal boulders: The case of Martigues, Marseille, France. Quat. Int. 2017, 439, 52–64. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Sansò, P. Boulders transport by catastrophic waves along the Ionian coast of Apulia (southern Italy). Mar. Geol. 2000, 70, 93–103. [Google Scholar] [CrossRef]
Eon | Era | Period | Epoch | Stage | Numerical Age (Ma) of Stage Start |
---|---|---|---|---|---|
Phanerozoic | Cenozoic | Quaternary | 2.580 | ||
Neogene | Pliocene | Piacenzian | 3.600 | ||
Zanclean | 5.333 | ||||
Miocene | Messinian | 7.246 | |||
Tortonian | 11.63 | ||||
Serravallian | 13.82 | ||||
Langhian | 15.97 | ||||
Burdigalian | 20.44 | ||||
Aquitanian | 23.03 | ||||
Paleogene | 66.00 |
Work | Locality ID | Location and/or Formation | Context of Study |
---|---|---|---|
Aguirre and Jimenez, 1997 [43] | 1 | Almeria-Nijar Basin | Palaeobiological: hard-bottom coastal communities |
Allen et al., 2007 [44] | 2 | Manukau Subgroup | Sedimentological: submarine volcaniclastic deposition |
Cantalamessa and Di Celma, 2005 [45] | 3 | Mejillones Peninsula | Sedimentological: tsunami backwash deposits |
Dewey and Ryan, 2017 [41] | 4 | Matheson Formation | Sedimentological: deposition under extreme conditions |
Edwards et al., 2004 [46] | 5 | Lady Julia Percy Island | Sedimentological and geomorphological: volcanic environment |
Emhoff et al., 2012 [47] | 6 | Isla Cerralvo, Baja California Sur | Stratigraphical and sedimentological: massive crushed-rhodolith deposit |
Gutierrez-Mas and Mas, 2013 [48] | 7 | Gulf of Cadiz | Sedimentological: deposition under extreme conditions |
Hanken et al., 1996 [49] | 8 | Northeast Rhodes | Sedimentological: deposition in coastal graben |
Hartley et al., 2001 [50] | 9 | Hornitos; La Portada Formation | Sedimentological: tsunamite |
Hood and Nelson, 2012 [51] | 10 | eastern Taranaki Basin | Sedimentological: carbonate debrites and tectonic control |
Johnson, 2006 [52] | global | Sedimentological and palaeobiological: rocky shores and their ecosystems | |
Johnson et al., 2011 [53] | 11 | Madeira Archipelago | Sedimentological and palaeobiological: rhodolith transport |
Johnson et al., 2012 [54] | 6 | Isla Cerralvo, Baja California Sur | Sedimentological and palaeobiological: rhodolith stranding event |
Le Roux et al., 2004 [55] | 12 | Coquimbo Formation | Sedimentological: scarp-controlled rocky shoreline |
Roberts and Brink, 2002 [56] | 13 | Western Cape; Prospect Hill Formation | Stratigraphical: dating of coastal deposits |
Rodriguez-Tovar et al., 2015 [57] | 14 | Sorbas basin | Palaeobiological: borings in gneiss boulders |
Shiki and Yamazaki, 1996 [58] | 15 | Chita Peninsula; Morozaki Group | Sedimentological: upper bathyal tsunamites |
Tachibana and Tsuji, 2011 [59] | 15 | Chita Peninsula; Morozaki Group | Sedimentological: upper bathyal tsunamites |
Watkins, 1992 [60] | 16 | Salton Trough region; Imperial Formation | Sedimentological and palaeobiological: shallow marine conglomerates and the relevant communities |
Wesselingh et al., 2013 [61] | 17 | Balgoy; Oosterhout Formation | Palaeobiological: brachiopod-dominated sea-floor assemblage from hardened sandstone boulders |
Winn and Pousai, 2010 [62] | 18 | Papuan Peninsula; Orubadi and Era Formations | Sedimentological: alluvial-fan and fan-delta deposition |
Work | Basic Terms | |||
---|---|---|---|---|
Boulder | Coastal Boulder Deposit | Megaclast | Other | |
Aguirre and Jimenez, 1997 [43] | + | |||
Allen et al., 2007 [44] | + | |||
Cantalamessa and Di Celma, 2005 [45] | + | boulder-bearing breccia | ||
Dewey and Ryan, 2017 [41] | + | boulderite | + | |
Edwards et al., 2004 [46] | boulder beach | |||
Emhoff et al., 2012 [47] | + | |||
Gutierrez-Mas and Mas, 2013 [48] | + | |||
Hanken et al., 1996 [49] | boulder beach | |||
Hartley et al., 2001 [50] | + | |||
Hood and Nelson, 2012 [51] | + | |||
Johnson, 2006 [52] | + | |||
Johnson et al., 2011 [53] | + | |||
Johnson et al., 2012 [54] | + | |||
Le Roux et al., 2004 [55] | + | |||
Roberts and Brink, 2002 [56] | boulder beach | |||
Rodriguez-Tovar et al., 2015 [57] | + | |||
Shiki and Yamazaki, 1996 [58] | boulder-bearing conglomerate | |||
Tachibana and Tsuji, 2011 [59] | + | |||
Watkins, 1992 [60] | + | boulder conglomerate | ||
Wesselingh et al., 2013 [61] | + | |||
Winn and Pousai, 2010 [62] | + |
Work | Conceptual | Miocene | Pliocene | Location |
---|---|---|---|---|
Aguirre and Jimenez, 1997 [43] | + | Spain | ||
Allen et al., 2007 [44] | + | New Zealand | ||
Cantalamessa and Di Celma, 2005 [45] | + | Chile | ||
Dewey and Ryan, 2017 [41] | + | + | New Zealand | |
Edwards et al., 2004 [46] | + | Australia (south) | ||
Emhoff et al., 2012 [47] | + | Mexico | ||
Gutierrez-Mas and Mas, 2013 [48] | + | Spain | ||
Hanken et al., 1996 [49] | + | Greece (Rhodes) | ||
Hartley et al., 2001 [50] | + | Chile | ||
Hood and Nelson, 2012 [51] | + | New Zealand | ||
Johnson, 2006 [52] | + | + | + | World |
Johnson et al., 2011 [53] | + | Portugal (Madeira) | ||
Johnson et al., 2012 [54] | + | Mexico | ||
Le Roux et al., 2004 [55] | + | + | Chile | |
Roberts and Brink, 2002 [56] | + | South Africa | ||
Rodriguez-Tovar et al., 2015 [57] | + | Spain | ||
Shiki and Yamazaki, 1996 [58] | + | Japan | ||
Tachibana and Tsuji, 2011 [59] | + | Japan | ||
Watkins, 1992 [60] | + | USA (California) | ||
Wesselingh et al., 2013 [61] | + | Netherlands | ||
Winn and Pousai, 2010 [62] | + | Papua New Guinea |
Work | Rocky Shore | Storm (S), Tsunami (T) | Delta, Fan | Volcanism | Gravity Movement |
---|---|---|---|---|---|
Aguirre and Jimenez, 1997 [43] | + | + | |||
Allen et al., 2007 [44] | + | ||||
Cantalamessa and Di Celma, 2005 [45] | T | + | |||
Dewey and Ryan, 2017 [41] | S, T | ||||
Edwards et al., 2004 [46] | + | ||||
Emhoff et al., 2012 [47] | + | ||||
Gutierrez-Mas and Mas, 2013 [48] | S, T | ||||
Hanken et al., 1996 [49] | not specified | ||||
Hartley et al., 2001 [50] | T | + | |||
Hood and Nelson, 2012 [51] | S | + | |||
Johnson, 2006 [52] | + | ||||
Johnson et al., 2011 [53] | + | S | + | ||
Johnson et al., 2012 [54] | + | S | + | ||
Le Roux et al., 2004 [55] | + | + | |||
Roberts and Brink, 2002 [56] | not specified | ||||
Rodriguez-Tovar et al., 2015 [57] | not specified | ||||
Shiki and Yamazaki, 1996 [58] | T | ||||
Tachibana and Tsuji, 2011 [59] | T | ||||
Watkins, 1992 [60] | + | + | |||
Wesselingh et al., 2013 [61] | S | ||||
Winn and Pousai, 2010 [62] | + | + |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, D.A. Coastal Boulder Deposits of the Neogene World: A Synopsis. J. Mar. Sci. Eng. 2019, 7, 446. https://doi.org/10.3390/jmse7120446
Ruban DA. Coastal Boulder Deposits of the Neogene World: A Synopsis. Journal of Marine Science and Engineering. 2019; 7(12):446. https://doi.org/10.3390/jmse7120446
Chicago/Turabian StyleRuban, Dmitry A. 2019. "Coastal Boulder Deposits of the Neogene World: A Synopsis" Journal of Marine Science and Engineering 7, no. 12: 446. https://doi.org/10.3390/jmse7120446