Prospects for Genetic Improvement in Objective Measurements of Body Colour in Pacific Whiteleg Shrimp (Litopenaeus vannamei)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Shrimp and Production of the Families
2.2. Grow-Out Environments
2.3. Measurements
2.3.1. Body Traits Record
2.3.2. Colour Trait Analysis
2.3.3. Maturation
2.4. Statistical Analysis
2.5. Modelling Genetic Variation when the Two Environments were Combined
2.6. Separate Analysis of Each Environment
2.7. Threshold Generalized Linear Mixed Model
2.8. Significance Test of the Heritability Estimates and Genetic Correlations
3. Results
3.1. Pedigree Information and Data Characteristics
3.2. Environmental Effects on Shrimp Colour
3.3. Heritability and Common Full-Sib Effects
3.4. Genetic Correlations among Traits
3.5. Genotype by Environment Interaction
4. Discussion
4.1. Heritability for Body Colour
4.2. Common Full-Sib Effects
4.3. Genetic Correlations Between Growth Traits and Colours
4.4. Genetic Correlations among Measurements of Body Colours
4.5. Genotype by Environment Interaction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Nguyen, N.H.; Quinn, J.; Powell, D.; Elizur, A.; Thoa, N.P.; Nocillado, J.; Lamont, R.; Remilton, C.; Knibb, W. Heritability for body colour and its genetic association with morphometric traits in Banana shrimp (Fenneropenaeus merguiensis). BMC Genet. 2014, 15, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, N.M.; Gabaudan, J.; Glencross, B.D. A review of carotenoid utilisation and function in crustacean aquaculture. Rev. Aquac. 2017, 9, 141–156. [Google Scholar] [CrossRef]
- Bernal Rodriguez, C.; Garcia, A.; Ponce-Palafox, J.; Spanopoulos-Hernández, M.; Puga-López, D. The Color of Marine Shrimps and Its Role in the Aquaculture. Int. J. Aquac. Fish. Sci. 2017, 3, 62–65. [Google Scholar]
- Martínez, A.; Romero, Y.; Castillo, T.; Mascaró, M.; López-Rull, I.; Simões, N.; Arcega-Cabrera, F.; Gaxiola, G.; Barbosa, A. The effect of copper on the color of shrimps: Redder is not always healthier. PLoS ONE 2014, 9, e107673. [Google Scholar] [CrossRef] [Green Version]
- Luchiari, A.; Marques, A.; Freire, F. Effects of substrate colour preference on growth of the shrimp Litopenaeus vannamei (Boone, 1931) (Decapoda, Penaeoidea). Crustaceana 2012, 85, 789–800. [Google Scholar]
- Wade, N.M.; Cheers, S.; Bourne, N.; Irvin, S.; Blyth, D.; Glencross, B.D. Dietary astaxanthin levels affect colour, growth, carotenoid digestibility and the accumulation of specific carotenoid esters in the Giant Tiger Shrimp, Penaeus monodon. Aquac. Res. 2017, 48, 395–406. [Google Scholar] [CrossRef]
- Tume, R.; Sikes, A.; Tabrett, S.; Smith, D. Effect of background colour on the distribution of astaxanthin in black tiger prawn (Penaeus monodon): Effective method for improvement of cooked colour. Aquaculture 2009, 296, 129–135. [Google Scholar] [CrossRef]
- Melville-Smith, R.; Cheng, Y.W.; Thomson, A.W. Factors affecting colour change in ‘white’ western rock lobsters, Panulirus cygnus. J. Exp. Mar. Biol. Ecol. 2003, 291, 111–129. [Google Scholar] [CrossRef]
- Enez, F.; Lorgeoux, B.; Mahunon, H.; Bugeon, J.; Vandeputte, M.; Gagnaire, P.; Bierne, N.; Blanc, P.; Haffray, P. Genetic parameters for growth and colour traits in Pacific blue shrimp Litopenaeus stylirostris in a mixed family design with SNP parentage assignement in New-Caledonia. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 16–18 February 2018; p. 279. [Google Scholar]
- Alcicek, Z.; Balaban, M. Quantification of the color of Whole Tiger Prawns (Penaeus monodon, Farbicious 1798). Int. J. Food Nutr. Sci. 2012, 1, 4–7. [Google Scholar]
- Christiansen, R.; Struksnæs, G.; Estermann, R.; Torrissen, O. Assessment of flesh colour in Atlantic salmon, Salmo salar L. Aquac. Res. 1995, 26, 311–321. [Google Scholar] [CrossRef]
- Gaffney, L.P.; Franks, B.; Weary, D.M.; von Keyserlingk, M.A. Coho salmon (Oncorhynchus kisutch) prefer and are less aggressive in darker environments. PLoS ONE 2016, 11, e0151325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikano, T. Marker-based estimation of heritability for body color variation in Japanese flounder Paralichthys olivaceus. Aquaculture 2005, 249, 95–105. [Google Scholar] [CrossRef]
- De Gracua, E.E.F.; Chien, Y.-H. Comparison of methods measuring pigmentation in aquatic animals and a new application of digital image acquisition and processing. J. Taiwan Fish. Soc. 2008, 35, 1–16. [Google Scholar]
- Sae-Lim, P.; Gjerde, B.; Nielsen, H.M.; Mulder, H.; Kause, A. A review of genotype-by-environment interaction and micro-environmental sensitivity in aquaculture species. Rev. Aquac. 2016, 8, 369–393. [Google Scholar] [CrossRef]
- Friars, G.W.; Smith, P.J. Heritability, Correlation and Selection Response Estimates of Some Traits in Fish Populations; Atlantic Salmon Federation: St. Andrews, NB, Canada, 11 September 2010. [Google Scholar]
- Pérez-Rostro, C.I.; Ibarra, A.M. Heritabilities and genetic correlations of size traits at harvest size in sexually dimorphic Pacific white shrimp (Litopenaeus vannamei) grown in two environments. Aquac. Res. 2003, 34, 1079–1085. [Google Scholar] [CrossRef]
- Castillo-Juárez, H.; Casares, J.C.Q.; Campos-Montes, G.; Villela, C.C.; Ortega, A.M.; Montaldo, H.H. Heritability for body weight at harvest size in the Pacific white shrimp, Penaeus (Litopenaeus) vannamei, from a multi-environment experiment using univariate and multivariate animal models. Aquaculture 2007, 273, 42–49. [Google Scholar] [CrossRef]
- Ibarra, A.M.; Famula, T.R. Genotype by environment interaction for adult body weights of shrimp Penaeus vannamei when grown at low and high densitie. Genet. Sel. Evol. 2008, 40, 541. [Google Scholar] [CrossRef]
- Krishna, G.; Gopikrishna, G.; Gopal, C.; Jahageerdar, S.; Ravichandran, P.; Kannappan, S.; Pillai, S.M.; Paulpandi, S.; Kiran, R.P.; Saraswati, R. Genetic parameters for growth and survival in Penaeus monodon cultured in India. Aquaculture 2011, 318, 74–78. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Hamzah, A.; Thoa, N.P. Effects of Genotype by Environment Interaction on Genetic Gain and Genetic Parameter Estimates in Red Tilapia (Oreochromis spp.). Front. Genet. 2017, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.Y.; Hamilton, A.; Guy, D.R.; Tinch, A.E.; Bishop, S.C.; Houston, R.D. The genetic architecture of growth and fillet traits in farmed Atlantic salmon (Salmo salar). BMC Genet. 2015, 16, 51. [Google Scholar] [CrossRef] [Green Version]
- Knibb, W.; Miller, A.; Quinn, J.; D’Antignana, T.; Nguyen, N.H. Comparison of lines shows selection response in kingfish (Seriola lalandi). Aquaculture 2016, 452, 318–325. [Google Scholar] [CrossRef]
- Trinh, T.T.; Nguyen, N.H.; Nguyen, H.H.; Wayne, K.; Nguyen, N.H. Genetic variation in disease resistance against White Spot Syndrome Virus (WSSV) in Liptopenaeus vannamei. Front. Genet. 2019, 10, 264. [Google Scholar]
- Trang, T.T.; Hung, N.H.; Ninh, N.H.; Nguyen, N.H. Selection for improved white spot syndrome virus resistance increased larval survival and growth rate of Pacific Whiteleg shrimp, Liptopenaeus vannamei. J. Invertebr. Pathol. 2019, 166, 107219. [Google Scholar] [CrossRef] [PubMed]
- Vu Van, S.; Nguyen Quang, T.; Vu Van, I.; Tran The, M. The effects of stocking density on the growth and survival rate, the insemination ability of White leg shrimp SPF (Litopenaeus vannamei). Vietnam. Sci. Dev. J. 2012, 10, 1008–1013. [Google Scholar]
- Palacios, E.; Perez-Rostro, C.; Ramirez, J.; Ibarra, A.; Racotta, I. Reproductive exhaustion in shrimp (Penaeus vannamei) reflected in larval biochemical composition, survival and growth. Aquaculture 1999, 171, 309–321. [Google Scholar] [CrossRef]
- Hung, D.; Vu, N.T.; Nguyen, N.H.; Ponzoni, R.W.; Hurwood, D.A.; Mather, P.B. Genetic response to combined family selection for improved mean harvest weight in giant freshwater prawn (Macrobrachium rosenbergii) in Vietnam. Aquaculture 2013, 412, 70–73. [Google Scholar] [CrossRef]
- Vaca, A.A.; Alfaro, J. Ovarian maturation and spawning in the white shrimp, Penaeus vannamei, by serotonin injection. Aquaculture 2000, 182, 373–385. [Google Scholar] [CrossRef]
- SAS Institute. SAS/IML 9.3 User’s Guide; SAS Institute: Cary, NC, USA, 2011. [Google Scholar]
- Gilmour, A.; Gogel, B.; Cullis, B.; Thompson, R. ASReml User Guide, Release 3.0; VSN International Ltd.: Hemel Hempstead, UK, 2009. [Google Scholar]
- McCulloch, C.; Searle, S.; Neuhaus, J. Generalized, Linear, and Mixed Models; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Norris, A.; Cunningham, E. Estimates of phenotypic and genetic parameters for flesh colour traits in farmed Atlantic salmon based on multiple trait animal model. Livest. Prod. Sci. 2004, 89, 209–222. [Google Scholar] [CrossRef]
- Powell, J.; White, I.; Guy, D.; Brotherstone, S. Genetic parameters of production traits in Atlantic salmon (Salmo salar). Aquaculture 2008, 274, 225–231. [Google Scholar] [CrossRef]
- Gjerde, B.; Schaeffer, L. Body traits in rainbow trout: II. Estimates of heritabilities and of phenotypic and genetic correlations. Aquaculture 1989, 80, 25–44. [Google Scholar] [CrossRef]
- Dufflocq, P.; Lhorente, J.P.; Bangera, R.; Neira, R.; Newman, S.; Yáñez, J.M. Correlated response of flesh color to selection for harvest weight in coho salmon (Oncorhynchus kisutch). Aquaculture 2017, 472, 38–43. [Google Scholar] [CrossRef]
- Winkelman, A.; Peterson, R. Heritabilities, dominance variation, common environmental effects and genotype by environment interactions for weight and length in chinook salmon. Aquaculture 1994, 125, 17–30. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Phuthaworn, C.; Knibb, W. Genomic prediction for disease resistance to Hepatopancreatic parvovirus and growth, carcass and quality traits in Banana shrimp Fenneropenaeus merguiensis. Genomics 2019. [Google Scholar] [CrossRef] [PubMed]
- Kause, A.; Ritola, O.; Paananen, T.; Mäntysaari, E.; Eskelinen, U. Coupling body weight and its composition: A quantitative genetic analysis in rainbow trout. Aquaculture 2002, 211, 65–79. [Google Scholar] [CrossRef]
- Quinton, C.D.; McMillan, I.; Glebe, B.D. Development of an Atlantic salmon (Salmo salar) genetic improvement program: Genetic parameters of harvest body weight and carcass quality traits estimated with animal models. Aquaculture 2005, 247, 211–217. [Google Scholar] [CrossRef]
- Lhorente, J.P.; Araneda, M.; Neira, R.; Yáñez, J.M. Advances in genetic improvement for salmon and trout aquaculture: The Chilean situation and prospects. Rev. Aquac. 2019, 11, 340–353. [Google Scholar] [CrossRef]
- Hamzah, A.; Nguyen, N.H.; Mekkawy, W.; Ponzoni, R.W.; Khaw, H.L.; Yee, H.Y.; Abu Bakar, K.R.; Mohd Nor, S.A. Flesh characteristics: Estimation of genetic parameters and correlated responses to selection for growth rate in the GIFT strain. Aquac. Res. 2016, 47, 2139–2149. [Google Scholar] [CrossRef]
- Hamzah, A.; Thoa, N.P.; Nguyen, N.H. Genetic analysis of a red tilapia (Oreochromis spp.) population undergoing three generations of selection for increased body weight at harvest. J. Appl. Genet. 2017, 58, 509–519. [Google Scholar] [CrossRef]
- Parisenti, J.; Beirão, L.H.; Tramonte, V.L.; Ourique, F.; da Silveira Brito, C.C.; Moreira, C.C. Preference ranking of colour in raw and cooked shrimps. Int. J. Food Sci. Technol. 2011, 46, 2558–2561. [Google Scholar] [CrossRef]
- Smith, B.E.; Hardy, R.W.; Torrissen, O.J. Synthetic astaxanthin deposition in pan-size coho salmon (Oncorhynchus kisutch). Aquaculture 1992, 104, 105–119. [Google Scholar] [CrossRef]
- Fingerman, M.; Tinkle, D.W. Responses of the white chromatophores of two species of prawns (Palaemonetes) to light and temperature. Biol. Bull. 1956, 110, 144–152. [Google Scholar] [CrossRef]
- Bhandiwad, A.; Johnsen, S. The effects of salinity and temperature on the transparency of the grass shrimp Palaemonetes pugio. J. Exp. Biol. 2011, 214, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.H. Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia and prawns in Asia: Achievements, lessons and challenges. Fish Fish. 2016, 17, 483–506. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Nguyen, N.H.; Nguyen, H.H. Evaluation of two genetic lines of Pacific White leg shrimp Liptopenaeus vannamei selected in tank and pond environments. Aquaculture. 2019. [Google Scholar] [CrossRef]
- Thoa, N.P.; Ninh, N.H.; Knibb, W.; Nguyen, N.H. Does selection in a challenging environment produce Nile tilapia genotypes that can thrive in a range of production systems? Sci. Rep. 2016, 6, 21486. [Google Scholar] [CrossRef] [Green Version]
Traits | Unit | n | Mean | SD | CV (%) |
---|---|---|---|---|---|
Body Colour | |||||
L* | 5460 | 27.5 | 8.7 | 31.9 | |
a* | 5451 | 4.6 | 3.7 | 80.3 | |
b* | 5455 | 5.1 | 4.3 | 84.6 | |
Morphometric | |||||
WT | g | 5464 | 21.0 | 5.6 | 26.5 |
LG | mm | 5464 | 144.9 | 12.8 | 8.9 |
WD | mm | 4429 | 88.3 | 7.9 | 9.0 |
Pedigree Information | Khanhhoa | Haiphong | Total |
---|---|---|---|
Number of sires | 113 | 84 | 197 |
Number of dams | 119 | 85 | 204 |
Number of half-sib families | 65 | 27 | 92 |
Number of full-sib families | 194 | 112 | 306 |
Number of common sires in both environments * | 84 |
Location | Khanhhoa | Haiphong | Both Environments | |||
---|---|---|---|---|---|---|
Traits | h2 | c2 | h2 | c2 | h2 | c2 |
Body Colour | ||||||
L* | 0.27 (0.04) | 0.00 (0.00) | 0.01 (0.00) | 0.00 (0.00) | 0.11 (0.04) | 0.01 (0.02) |
a* | 0.66 (0.15) | 0.01 (0.01) | 0.00 (0.00) | 0.01 (0.01) | 0.55 (0.06) | 0.01 (0.01) |
b* | 0.82 (0.07) | 0.00 (0.00) | 0.03 (0.02) | 0.00 (0.00) | 0.30 (0.04) | 0.01 (0.00) |
Morphometric | ||||||
WT | 0.62 (0.13) | 0.18 (0.07) | 0.17 (0.08) | 0.00 (0.00) | 0.17 (0.05) | 0.06 (0.03) |
LG | 0.61 (0.13) | 0.07 (0.06) | 0.11 (0.02) | 0.00 (0.00) | 0.18 (0.06) | 0.01 (0.01) |
WD | 0.66 (0.14) | 0.07 (0.06) | 0.19 (0.04) | 0.00 (0.00) | 0.14 (0.05) | 0.06 (0.03) |
Maturity | ||||||
Maturity 1 | 0.11 (0.05) | 0.01 (0.02) | 0.05 (0.02) | 0.00 (0.00) | 0.17 (0.03) | 0.00 (0.00) |
Maturity 2 | 0.04 (0.09) | 0.15 (0.06) | 0.08 (0.07) | 0.01 (0.04) | 0.07 (0.05) | 0.04 (0.03) |
Trait | WT | LG | WD | L* | a* | b* | Maturity |
---|---|---|---|---|---|---|---|
WT | - | 0.68 | 0.77 | −0.07 | 0.05 | 0.01 | 0.29 |
LG | 0.96 (0.01) | - | 0.65 | 0.03 | 0.06 | −0.01 | 0.26 |
WD | 0.98 (0.01) | 0.94 (0.02) | - | −0.07 | 0.01 | −0.04 | 0.26 |
L* | −0.25 (0.11) | −0.14 (0.12) | −0.28 (0.11) | - | 0.09 | 0.06 | −0.06 |
a* | 0.24 (0.10) | 0.32 (0.09) | 0.13 (0.10) | 0.79 (0.06) | - | 0.96 (0.01) | 0.01 |
b* | 0.32 (0.10) | 0.40 (0.09) | 0.19 (0.11) | 0.85 (0.05) | 0.85 (0.05) | - | −0.01 |
Maturity | 0.89 (0.18) | 0.76 (0.20) | 0.72 (0.26) | −0.36 (0.25) | 0.25 (0.27) | 0.24 (0.26) | - |
Trait | Genetic Correlation | S.E |
---|---|---|
Body colour | - | - |
L* | −0.41 | 0.22 |
a* | 0.08 | 0.14 |
b* | 0.16 | 0.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giang, C.T.; Knibb, W.; Muu, T.T.; Ninh, N.H.; Nguyen, N.H. Prospects for Genetic Improvement in Objective Measurements of Body Colour in Pacific Whiteleg Shrimp (Litopenaeus vannamei). J. Mar. Sci. Eng. 2019, 7, 460. https://doi.org/10.3390/jmse7120460
Giang CT, Knibb W, Muu TT, Ninh NH, Nguyen NH. Prospects for Genetic Improvement in Objective Measurements of Body Colour in Pacific Whiteleg Shrimp (Litopenaeus vannamei). Journal of Marine Science and Engineering. 2019; 7(12):460. https://doi.org/10.3390/jmse7120460
Chicago/Turabian StyleGiang, Cao Truong, Wayne Knibb, Tran The Muu, Nguyen Huu Ninh, and Nguyen Hong Nguyen. 2019. "Prospects for Genetic Improvement in Objective Measurements of Body Colour in Pacific Whiteleg Shrimp (Litopenaeus vannamei)" Journal of Marine Science and Engineering 7, no. 12: 460. https://doi.org/10.3390/jmse7120460
APA StyleGiang, C. T., Knibb, W., Muu, T. T., Ninh, N. H., & Nguyen, N. H. (2019). Prospects for Genetic Improvement in Objective Measurements of Body Colour in Pacific Whiteleg Shrimp (Litopenaeus vannamei). Journal of Marine Science and Engineering, 7(12), 460. https://doi.org/10.3390/jmse7120460