Coastal Processes and Influence on Damage to Urban Structures during Hurricane Irma (St-Martin & St-Barthélemy, French West Indies)
Abstract
:1. Introduction
2. Study Area
3. Hurricane Characteristics
4. Methods and Tools
4.1. Evaluation of Coastal Changes
4.2. Evaluation of Flooding
4.3. Evaluation of Coastal Ecosystems
4.4. Wind and Marine Flood Damage Intensity Scale for Buildings (WFDS)
4.5. Damage Mapping from Field & UAV Surveys
5. Results
5.1. Major Coastal Impacts of Hurricane Irma
5.2. Storm Surge Numerical Modeling and Geomorphological Observations
5.3. Building Damage Assessments
5.4. Spatial Correlation between Damage Intensity and Marine Flooding
5.5. Field & UAV (GRED) vs Satellite Damage Assessment (Copernicus EMS)
6. Discussion
6.1. Effects of Hurricane Irma on Storm Surge and Waves
6.2. Complex Causes of Flooding
6.3. Effects of Hurricane Irma on Coastal Systems
- waves cause scouring of foundations and of building walls, as well as displacement of protective riprap. Failures were observed at the corners or edges of structures or in areas of flow convergence.
- they break shutters, doors and patio doors;
- materials are projected onto facades and into homes;
- direct flooding cause damage to building contents (walls, floor, electrical systems).
7. Conclusions
- -
- In urban coastal zones, the coastline has not really receded but the urban beach has suffered from severe erosion. Indeed, the coastal system is compressed between urbanization and the sea, which reduces post-hurricane beach recovery. Such configuration exacerbates the effects of hurricane waves on beaches, vegetation and shore protection structures. Scouring was the source of many structural failures, often amplified at the corners or edges of structures or in areas of flow convergence. Shore protection structures were inadequate to absorb the surge and extreme wave energy. Locally, buildings increased wave impacts and therefore beach erosion and damage. In return, damage to buildings were often extremely high.
- -
- Along naturals coast, beach sand was transported from the nearshore and the lower beach to the upper beach and back of the beach (washover deposits). Sediments were also trapped by the most resistant plants, contributing to beach accretion and forming along shore bands of coral material. Large parts of the mangrove were destroyed, damaged or flattened; however, the mangrove helped reduce damage. The question of coastal resilience and/or new coastal resilience trajectory remains open. Indeed, coasts respond to altered conditions external to the system or to changes triggered by internal thresholds that cannot be predicted on the basis of external stimuli [3,72]. This natural coastal variability make it difficult to identify the combined effects of hurricanes and sea level rise. It will require long-term evaluation of the coasts in order to better evaluate recovery processes and low-frequency variations [73].The link between coastal risk and damage was clearly demonstrated with an original approach based on a damage typology that is adapted to the considered territory and an interpretation of damage that associated ground-based descriptions and UAV image interpretation. Copernicus EMS rapid damage mapping service introduces significant errors in damage diagnosis from satellite, in terms of numbers, intensity and location. It can introduce significant biases into the statistical and overall estimation of destruction and cost of tropical cyclones. It therefore seems important to take these uncertainties into account, or at least to mention them in future estimates of post-cyclone damage. We also encourage the Copernicus EMS to make its assessments more reliable by sharing experience and data with field and UAV survey operators.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Study Area | General Characteristics of the Sandy Coast | Coastal Processes | Surge /Maximum Wave Height (Hmax in Meters) | Coastal Damage and Flooding | |
---|---|---|---|---|---|
Abrasion | Accretion | ||||
Red Bay SXM | Beach (L: 1.6km, W: 20–40 m) and dunes (height ~3m) Beachrock Pond (1.6 km2) Coastal homes | Beach and dune erosion Beachrock exhumation Vertical erosion in front of the homes: 1–1.2 m | Numerous washovers (extension max: 35 m) Transport of reef blocks of various sizes (max 108 kg) and of carbonate sand Sands deposited in the pond Landward transport of broken slabs | Hmax: 3 m Hmax: 6–8 m on the rocky cape | Coastal homes flooded Wall collapse Vertical scouring and displacement of protective riprap Undermining of foundations |
Nettle Bay SXM | Beach barrier-inlet system (L: 4km, W: 105–405 m) Urban front (houses and hotels) | Sandy beach erosion Dune scarp erosion (> 0.4 m) Beachrock exhumation | Sediment transfer and accretion on the upper beach Average extension of the washover deposits: 20–30 m Transport of reef blocks of various sizes (max 300 kg) Massive coral slabs broken and detached from the reef | Surge: 3–4 m Hmax: 6 m Hmax: 6–8 m on the rocky cape | Houses and hotels partially or totally destroyed Vertical scouring at seawall Displacement of protective riprap Decapitated coconut trees |
Marigot SXM | No beach Urban waterfront | Transport of coral blocks of various sizes onto the road | Surge ~2 m Hmax: 4 m | Urban waterfront floodedSeawall damage Displacement of protective riprap | |
Orient Bay SXM | Bay beach (L: 2.1 km –W: 20–40 m) Lagoon (2.3 km2) and mangrove Urban coast in the southern part | Sandy beach erosion | Accretion on the upper beach (dune formation) Maximal extension of the washover deposits: 45 m Transport of reef blocks of various sizes mangrove: mechanical obstacle, sediment and detritus trap | Surge: 3 m Hmax: 5 m Hmax: 9–10 m on the rocky cape | Houses and hotels partially or totally destroyed Displacement of protective riprap Uprooted coconuts trees Downed plantsMangrove hypersalinity |
Grand-Case SXM | Urban beach (L: 1.9 km–W:0–18 m) Coastal front urban | Heavy beach erosion Vertical erosion in front of the houses: 0.5 m | Sand accumulation through non-urbanized areas Transport of single coral blocks | Surge: 3 m Hmax: 5–6 m | Wall collapse Undermining of foundations Damage along the waterfront |
Marcel Bay SXM | Bay beach (L: 0.4 km–W: 15–25 m) Riverine mangrove Coconut trees Seaside resort | Sandy beach erosion | Light sand transfer Average extension of the washover deposits: 25 m | Surge: 3 m Hmax: 3 m | Partially and totally destroyed buildings (resort) Mangrove hypersalinity Decapited coconut trees |
Lorient Bay SB | Bay beach (L: 1 km–W: 0–0.15 m) Beachrock Urban front (houses and hotels) | Dune scarp erosion > 0.5 m | Numerous washovers through non-urbanized areas Maximal extension of the washover deposits: 30 m Single coral blocks deposited on the beach | Surge: 2 m Hmax: over 3 m on the rocky cape | Houses and hotels partially destroyed and flooded Wall collapse /Undermining of foundations and significant damage |
Cayes Bay SB | Sandy beach (L: 0.6 km–W: 2–20 m) and corals blocks Urban front (houses and hotels) | Dune scarp erosion > 0.5 m–1 m Exhumation of beachrock | Sediment transfer on the upper beach Transport of variously-sized reef blocks | Surge: 2–2.5 m Hmax: 3–4 m | Housing and hotels partially destroyed Undermining of foundations Displacement of protective riprap Decapitated coconut trees |
Grand Cul de Sac SB | Beach barrier system (L: 1.1 km–W: 45–65 m) Barrier reef Lagoon (1.5 km2) connected to the sea Urbanized beach barrier (resorts) | Beach erosion Exhumation of beachrock | Landward transport of broken slabs and reef blocks (0.1–0.2 m) Accumulation of coral rubble (shingle) Coral blocks trapped by the mangrove | Surge: 3 m Hmax < 5 m | Housing and hotels partial destroyed and inundated Wall collapse Undermining of foundations Displacement of protective riprap Downed plants Hypersalinity of the mangrove |
Flamands Bay SB | Bay beach (L: 0.7 km –W: 20–38 m) Urbanized beach barrier (resorts) | Heavy marine erosion between buildings (300 to 800m3) Dune scarp erosion > 1.7 m max Exhumation of beachrock | Transport of reef blocks (max 50 kg) | Surge: 3 m Hmax: 5 m on the dune Hmax: 8–10 m on the rocky cape | Damaged buldings (resort) Wall collapse Undermining of foundations and significantly damaged Uprooted coconut trees |
Toiny Bay SB | Beach barrier system (L: 0.5 km–W: 8–22 m) Pond (0.4 km2) and mangrove | Dune scarp erosion > 0.5 m | Numerous large washover Average extension of the washover deposits: 20 to 35 m Cluster or ridges coral blocks Transport of large reef blocks (max 230 kg) Vegetation: mechanical obstacle and sediment trap on the upper beach | Surge: 2.5–3 m Hmax > 4 m on the beach Hmax >6 m on the rocky cape | Uprooting (pandanus and coconut trees) Downed plants |
References
- Meheux, K.; Dominey-Howes, D.; Lloyd, K. Natural hazard impacts in small island developing states: A review of current knowledge and future research needs. Nat. Hazard. 2007, 40, 429–446. [Google Scholar] [CrossRef]
- Hoeke, R.K.; McInnes, K.L.; Kruger, J.C.; McNaught, T.R.J.; Hunter, J.R.; Smithers, S.G. Widespread Inundation of Pacific Islands Triggered by Distant-Source Wind-Waves. Global Planet. Chang. 2013, 108, 128–138. [Google Scholar] [CrossRef]
- Nurse, L.A.; Mcleaen, R.F.; Agard, J.; Briguglio, L.P.; Duvat-Magnan, V.; Pelesikoti, N.; Tompkins, E.; Webb, A. Small islands. (Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.) In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press Cambridge: Cambridge, UK, 2014; pp. 1613–1654. [Google Scholar]
- Gaillard, J.C. Vulnerability, capacity and resilience: Perspectives for climate and development policy. J. Int. Dev. 2010, 22, 218–232. [Google Scholar] [CrossRef]
- Duvat, V. Le Système du Risque à Saint-Martin (Petites Antilles Françaises). 2008. Available online: http://journals.openedition.org/developpementdurable/7303 (accessed on 1 September 2018). (In French).
- Theng, S. L’île de Saint-Barthélemy (Petites Antilles): Une destination du tourisme de luxe. 2014. Available online: http://journals.openedition.org/etudescaribeennes/6831 (accessed on 9 July 2019). (In French).
- Nicolas, T.; Pagney Bénito-Espinal, F.; Lagahé, É.; Gobinddass, M.-L. Les catastrophes cycloniques de septembre 2017 dans la Caraïbe insulaire au prisme de la pauvreté et des fragilités sociétales. [cyclonic disasters of September 2017 in the insular Caribbean with the prism of poverty and societal fragility]. EchoGéo 2018, 46. Available online: http://journals.openedition.org/echogeo/16439 (accessed on 1 February 2019). (In French).
- Desarthe, J.; Moncoulon, D. Quatre siècles de cyclones tropicaux dans les départements français d’outre-mer. [Four centuries of tropical cyclones in the French overseas departments]. La Météorologie. 2017, 99, 52–58. (In French) [Google Scholar] [CrossRef]
- Mazurie, R.; Chauvin, F.; Degrace, J.-N. Commentaire sur l’article “Quatre siècles de cyclones tropicaux dans les départements français d’outre-mer”. [Comments on “Four centuries of tropical cyclones in the French overseas departments”]. La Météorologie 2018, 101, 62. (In French) [Google Scholar] [CrossRef]
- Morton, R.A.; Sallenger, A.H., Jr. Morphological impacts of extreme storms on sandy beaches and barriers. J. Coast. Res. 2003, 19, 560–573. [Google Scholar]
- Wang, P.; Horwitz, M.H. Erosional and depositional characteristics of regional overwash deposits caused by multiple hurricanes. Sedimentology 2007, 54, 545–564. [Google Scholar] [CrossRef]
- Etienne, S.; Terry, J.P. Coral boulders, gravel tongues and sand sheets: Features of coastal accretion and sediment nourishment by Cyclone Tomas (March 2010) on Taveuni Island, Fiji. Geomorphology 2012, 175–176, 54–65. [Google Scholar] [CrossRef]
- Brill, D.; May, S.; Engel, M.; Reyes, M.; Pint, A.; Opitz, S.; Dierick, M.; Anne, G.L.; Esser, S.; Brückner, H. Typhoon Haiyan’s sedimentary record in coastal environments of the Philippines and its palaeotempestological implications. Nat. Hazards Earth Syst. Sci. 2016, 16, 2799–2822. [Google Scholar] [CrossRef]
- Duvat, V.; Magnan, A.; Étienne, S.; Salmon, C.; Pignon-Mussaud, C. Assessing the impacts of and resilience to Tropical Cyclone Bejisa, Reunion Island (Indian Ocean). Nat. Hazard. 2016, 83, 1–40. [Google Scholar] [CrossRef]
- Rey, T.; Le Dé, L.; Leone, F.; David, G. Leçons tirées du cyclone Pam au Vanuatu (Mélanésie): Aléas côtiers, crues éclairs et dommages. [Learning from TC Pam in Vanuatu (Melanesia): Coastal hazards, flash flood and damage]. Géomorphologie Relief Process. Environ. 2018, 23, 343–356. (In French) [Google Scholar]
- Boyett, R. Post-Hurricane Isaac assessment: Modeling confirms the HSDRRS had little impact on areas outside the system. Riverside Mag. (USACE—New Orleans District.) 2013, 13–14. [Google Scholar]
- Torres, M.A.; Jaimes, M.A.; Reinoso, E.; Ordaz, M. Event-based approach for probabilistic flood risk assessment. Int. J. River Basin Manag. 2014, 12, 377–389. [Google Scholar] [CrossRef]
- McInnes, K.L.; Walsh, K.J.E.; Hubbert, G.D.; Beer, T. Impact of sea level rise and storm surges on a coastal community. Nat. Hazard. 2003, 30, 187–207. [Google Scholar] [CrossRef]
- De La Torre, Y.; Lecacheux, S.; Pedreros, R.; Balouin, Y. Modélisation de la houle cyclonique dans le lagon de Mayotte. In Proceedings of the Xèmes Journées Nationales Génie Côtier-Génie Civil, Sophia Antipolis, France, 14–16 October 2008; pp. 325–334. [Google Scholar]
- Canavesio, R.; Jeanson, M.; Etienne, S. La gestion du risque cyclonique en polynésie française et ses límites: Exemple du cyclone tropical Oli, février 2010. [Cyclonic risk management and its limits in French Polynesia: Example of TC Oli, February 2010]. Bulletin de l’Association des Géographes Français 2014, 3, 396–408. (In French) [Google Scholar]
- Gustin, P. Repenser les Iles du Nord pour une reconstruction durable. [Rethinking Northern islands (FWI) for a sustainable recontruction]. Rapport Délégation interministérielle à la reconstruction des îles de Saint-Barthélemy et de Saint-Martin. 2017. Available online: https://www.gouvernement.fr/irma-reconstruction-des-iles-de-saint-barthelemy-et-saint-martin. (accessed on 1 September 2018). (In French).
- Friedland, C.J. Residential building damage from hurricane storm surge: Proposed methodologies to describe, assess and model building damage. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2009. [Google Scholar]
- Kelman, I. Climate Change and Other Catastrophes: Lessons from Island Vulnerability and Resilience. Moving Worlds J. Transcult. Writ. 2014, 14, 127–140. [Google Scholar]
- IEDOM. Institut d’émission des Départements d’Outre-Mer. [Institute of Emission in French Overseas Departements]. Available online: https://www.iedom.fr/IMG/pdf/iedom-rapport_annuel_2018-planche_2.pdf (accessed on 15 March 2019). (In French).
- Cangialosi, J.P.; Latto, A.S.; Berg, R. Hurricane Irma; Tropical Cyclone Report, National Hurricane Center: Miami, FL, USA, 2018. Available online: https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf (accessed on 1 March 2019).
- Landsea, C.W. A climatology of intense (or major) Atlantic hurricanes. Mon. Weather Rev. 1993, 121, 1703–1713. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Landsea, C.W.; Franklin, J.L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF version 3. Tech. Rep. NCAR/TN-475+STR. National Center for Atmospheric Research, 2008. Available online: http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf (accessed on 1 April 2018).
- Duvat, V.; Pillet, V.; Volto, N.; Krien, Y.; Cécé, R.; Bernard, D. Geomorphology High human influence on beach response to tropical cyclones in small islands: Saint-Martin Island, Lesser Antilles. Geomorphology 2019, 325, 70–91. [Google Scholar] [CrossRef]
- Clayton, A.M.; Lorenc, A.C.; Barker, D.M. Operational implementation of a hybrid ensemble/4D-Var global data assimilation at the Met Office. Q. J. Roy. Meteorol. Soc. 2013, 139, 1445–1461. [Google Scholar] [CrossRef]
- Tolman, H.L. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr. 1991, 21, 782–797. [Google Scholar] [CrossRef]
- Osinski, R.; Dalphinet, A.; Aouf, L.; Palany, P. Estimation of the hundred year return level of the significant wave height for the French Guiana coast. Brazil. J. Oceanogr. 2018, 66, 325–334. [Google Scholar]
- Bleck, R. An oceanic general circulation model framed in hybrid isopycnic cartesian coordinates. Ocean Modell. 2002, 4, 55–88. [Google Scholar] [CrossRef]
- Casitas, S.; Pasquet, A.; Michaud, H.; Baraille, R.; Jourdan, D. Modélisation des surcotes avec HYCOM pour les départements d’outre-mer. [Surge modelisation with HYCOM for french overseas department]. In Proceedings of the XVèmes Journées Nationales Génie Côtier–Génie Civil, La Rochelle, France, 14–16 October 2018. (In French).
- Faye, I. La Dynamique du trait de côte sur les littoraux sableux d’Afrique de l’Ouest. Approches régionale et locale par photo-interprétation, traitement d’images et analyse de cartes anciennes. [Coastline dynamics on the sandy coasts of West Africa. Regional and local approaches through photo-interpretation, image processing and analysis of old maps]; Thèse de doctorat de géographie, Université de Bretagne Occidentale: Brest, France, 2010. (in French) [Google Scholar]
- Lemoigne, B.; Paulineau, M.; Nachbaur, A.; Stépanian, A. Établissement d’un état de référence du trait de côte de la Martinique: Situation en 2010 et évolution historique depuis 1951. [Establishment of a baseline state of the coastline of Martinique: Situation in 2010 and historical evolution since 1951]; Rapport Final; BRGM/RP-61686-FR150: Orélans, France, 2013; p. 85. (In French) [Google Scholar]
- Terry, J.P. Geomorphic influences on the variability of coastal erosion and deposition on Ambae Island, Vanuatu, caused by Ouragan Funa in January 2008. In Advances in Geosciences; Oh, J.H., Ed.; World Scientific Publishing: Singapore, 2010; Volume 16, pp. 193–202. [Google Scholar]
- Zhang, K.; Liu, H.; Li, Y.; Xu, H.; Shen, J.; Rhome, J.; Smith, T.J. The role of mangroves in attenuating storm surges. Estuarine Coast. Shelf Sci. 2012, 102–103, 11–23. [Google Scholar] [CrossRef]
- Becker, J.J.; Sandwell, D.T.; Smith, W.H.F.; Braud, J.; Binder, B.; Depner, J.; Fabre, D.; Factor, J.; Ingalls, S.; Kim, S.-H.; et al. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Mar. Geod. 2009, 32, 355–371. [Google Scholar] [CrossRef]
- Holland, G. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Mon. Weather Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Emanuel, K.; Rotunno, R. Self-stratification of tropical cyclone outflow, Part I: Implications for storm structure. J. Atmos. Sci. 2011, 68, 2236–2249. [Google Scholar] [CrossRef]
- Krien, Y.; Arnaud, G.; Cécé, R.; Ruf, C.; Belmadani, A.; Bernard, D.; Islam, A.K.M.S.; Durand, F.; Testut, L.; Palany, P.; et al. Can We Improve Parametric Cyclonic Wind Fields Using Recent Satellite Remote Sensing Data? Remote Sens. 2018, 10, 1963. [Google Scholar] [CrossRef]
- Saha, S.K.; Halder, S.; Suryachandra Rao, A.; Goswami, B.N. Modulation of ISOs by land-atmosphere feedback and contribution to the interannual variability of Indian summer monsoon. J. Geophys. Res. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Turner, R.J. Beachrock. In Encyclopedia of Coastal Science; Schwartz, M.L., Ed.; Kluwer Academic Publishing: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Monismith, S.G.; Rogers, J.S.; Koweek, D.; Dunbar, R.B. Frictional wave dissipation on a remarkably rough reef. Geophys. Res. Lett. 2015, 42, 4063–4071. [Google Scholar] [CrossRef]
- Rogers, J.S.; Monismith, S.G.; Koweek, D.A.; Dunbar, R.B. Wave dynamics of a Pacific Atoll with high frictional effects. J. Geophys. Res. Oceans. 2016, 121, 350–367. [Google Scholar] [CrossRef]
- Adams, B.J.; Womble, J.A.; Mio, M.Z.; Turner, J.B.; Mehta, K.C.; Ghosh, S. Field Report: Collection of Satellite-Referenced Building Damage Information in the Aftermath of Hurricane Charley; MCEER, University at Buffalo, State University of New York: New York, NY, USA, 2004; p. 16. [Google Scholar]
- Mese, M.D. Wind versus flood coverage and Hurricane Katrina. Class Action Litig. Rep. 2005, 6, 795–797. [Google Scholar]
- Hinckley, J.M. Guidelines for Determination of Wind Versus Water Causation of Hurricane Damage. In Proceedings of the Fourth Forensic Engineering Congress, Cleveland, OH, USA, 6–9 October 2006. [Google Scholar]
- Adams, B.J.; Womble, J.A.; Ghosh, S.; Friedland, C. Deployment of remote sensing technology for multi-hazard post-Katrina damage assessment within a spatially-tiered reconnaissance framework. In Proceedings of the Fourth International Workshop on Remote Sensing for Post Disaster Response, Cambridge, UK, 25 September 2006. [Google Scholar]
- Womble, J.A.; Smith, D.A.; Adams, B.J. Use of emerging remote-sensing technologies to determine neighborhood wind/water damage patterns. In Proceedings of the Structures Congress 2008, Vancouver, BC, Canada, 24–26 April 2008. [Google Scholar]
- Rey, T.; Le Dé, L.; Leone, F.; Gilbert, D. An integrative approach to understand vulnerability and resilience post-disaster: The 2015 cyclone Pam in urban Vanuatu as case study. Disaster Prev. Manag. 2017, 26, 259–275. [Google Scholar] [CrossRef]
- Herteman, M. Analyse et diagnostic écologique post-cyclone Irma 2017 à Saint-Martin. [Ecological analysis and diagnostic after TC Irma (2017) in Saint-Martin]. Rapport, compte du Conservatoire du Littoral, French. July 2018; 93. (In French) [Google Scholar]
- Griggs, G. Coasts in Crisis: A Global Challenge, 1st ed.; University of California Press: Oakland, CA, USA, 2017; p. 360. [Google Scholar]
- Kelletat, D.; Schellmann, G. Tsunamis on Cyprus: Field evidences and 14C dating results. Zeitschrift fur Geomorphologie (NF) 2002, 46, 19–34. [Google Scholar] [CrossRef]
- Pillet, V.; Duvat, V.K.E.; Krien, Y.; Cécé, R.; Arnaud, G.; Pignon-Mussaud, C. Assessing the impacts of shoreline hardening on beach response to hurricanes: Saint-Barthélemy, Lesser Antilles. Ocean Coast. Manag. 2019, 174, 71–91. [Google Scholar] [CrossRef]
- Gawehn, M.; van Dongeren, A.; van Rooijen, A.; Storlazzi, C.D.; Cheriton, O.M.; Reiniers, A. Identification and classification of very low frequency waves on a coral reef flat. J. Geophys. Res. Oceans 2016, 121, 7560–7574. [Google Scholar] [CrossRef]
- CNES. Post-event image: Pleiades-1B© CNES (2017), distributed by Airbus DS (acquired on 10/09/2017 at 14:40, GSD 0.5 m, approx. 40% cloud coverage in AoI, 16.2° off-nadir angle). 2017. Available online: https://emergency.copernicus.eu/mapping/system/files/components/EMSR232_05GRANDCASE_02GRADING_MAP_v2_200dpi.pdf (accessed on 1 November 2017).
- Copernicus EMS. Mapping activation EMSR232, Grand Case & Marigot: Grading Map, scale 1:14000, published 2017-09-21, product version: v2, quality approved. 2017. Available online: https://emergency.copernicus.eu/mapping/list-of-components/EMSR232 (accessed on 1 November 2017).
- SERTIT. Évaluation des dommages, situation mi-septembre 2017: Saint-Martin. [Damage Assessing, mid-september 2017 Situation: Saint Martin]. Echelle 1:23000. Available online: http://sertit.u-strasbg.fr/RMS/action.php?id=1165404211#P1 (accessed on 1 December 2017).
- CEREMA & DEAL Guadeloupe. Aléa submersion marine actualisé par l’évènement IRMA du 6 septembre 2017. [Storm surge hazard including TC IRMA (6th 2017)].. Available online: http://www.com-saint-martin.fr/ (accessed on 15 January 2018). (In French).
- Del Gaudio, C.; De Martino, G.; Di Ludovico, M.; Manfredi, G.; Prota, A.; Ricci, P. Verderame GM. Empirical fragility curves from damage data on RC buildings after the 2009 L’Aquila earthquake. Bull. Earthq. Eng. 2017, 15, 1425–1450. [Google Scholar] [CrossRef]
- Valencia, N.; Gardi, A.; Gauraz, A.; Leone, F.; Guillande, R. New tsunami damage functions developed in the framework of SCHEMA project: Application to European-Mediterranean coasts. Nat. Hazards Earth Syst. Sci. 2011, 11, 2835–2846. [Google Scholar] [CrossRef]
- Giardino, A.; Nederhoff, K.; Vousdoukas, M. Coastal hazard risk assessment for small islands: Assessing the impact of climate change and disaster reduction measures on Ebeye (Marshall Islands). Reg. Environ. Change 2018, 18, 2237–2248. [Google Scholar] [CrossRef]
- Ding, D.; Yang, J.; Li, G.; Dada, O.A.; Gong, L.; Wang, N.; Wang, X.; Zhang, B. A geomorphological response of beaches to Typhoon Meari in the eastern Shandong Peninsula in China. Acta Oceanol. Sin. 2015, 34, 126–135. [Google Scholar] [CrossRef]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortlock, T.R.; Metters, D.; Soderholm, J.; Maher, J.; Lee, S.B.; Boughton, G.; Stewart, N.; Zavadil, E.; Goodwin, I.D. Extreme water levels, waves and coastal impacts during a severe tropical cyclone in northeastern Australia: A case study for cross-sector data sharing. Nat. Hazards Earth Syst. Sci. 2018, 18, 2603–2623. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; van Wesenbeeck, B.; Pontee, N. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [PubMed]
- Darryl, D.E.; Mitsch, V.J. Coastal protection from tsunamis and cyclones provided by mangrove wetlands—A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 71–83. [Google Scholar]
- Imbert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 2018, 9, e02231. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Etienne, S. Marine inundation hazards in French Polynesia: Geomorphic impacts of tropical cyclone Oli in February 2010. In Natural Hazards in the Asia-Pacific Region: Recent Advances and Emerging Concepts; Terry, J., Goff, J., Eds.; Geological Society: London, UK, 2012; Volume 361, pp. 21–39. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey, T.; Leone, F.; Candela, T.; Belmadani, A.; Palany, P.; Krien, Y.; Cécé, R.; Gherardi, M.; Péroche, M.; Zahibo, N. Coastal Processes and Influence on Damage to Urban Structures during Hurricane Irma (St-Martin & St-Barthélemy, French West Indies). J. Mar. Sci. Eng. 2019, 7, 215. https://doi.org/10.3390/jmse7070215
Rey T, Leone F, Candela T, Belmadani A, Palany P, Krien Y, Cécé R, Gherardi M, Péroche M, Zahibo N. Coastal Processes and Influence on Damage to Urban Structures during Hurricane Irma (St-Martin & St-Barthélemy, French West Indies). Journal of Marine Science and Engineering. 2019; 7(7):215. https://doi.org/10.3390/jmse7070215
Chicago/Turabian StyleRey, Tony, Frédéric Leone, Thomas Candela, Ali Belmadani, Philippe Palany, Yann Krien, Raphael Cécé, Monique Gherardi, Matthieu Péroche, and Narcisse Zahibo. 2019. "Coastal Processes and Influence on Damage to Urban Structures during Hurricane Irma (St-Martin & St-Barthélemy, French West Indies)" Journal of Marine Science and Engineering 7, no. 7: 215. https://doi.org/10.3390/jmse7070215
APA StyleRey, T., Leone, F., Candela, T., Belmadani, A., Palany, P., Krien, Y., Cécé, R., Gherardi, M., Péroche, M., & Zahibo, N. (2019). Coastal Processes and Influence on Damage to Urban Structures during Hurricane Irma (St-Martin & St-Barthélemy, French West Indies). Journal of Marine Science and Engineering, 7(7), 215. https://doi.org/10.3390/jmse7070215