Experimental Analysis of Wave Overtopping: A New Small Scale Laboratory Dataset for the Assessment of Uncertainty for Smooth Sloped and Vertical Coastal Structures
Abstract
:1. Introduction
2. Experimental Set-Up
2.1. Flume Set-Up
2.2. Wave and Overtopping Measurement and Analysis
3. Test Programme
3.1. Incident Wave Conditions
3.2. Repetitions with Non-Random and Random Seeding
3.3. Still Water Level Initial Conditions
3.4. Wave Generation
4. Results
4.1. Overtopping Discharge
4.2. Probability of Overtopping
4.3. Individual and Maximum Overtopping Volumes
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van der Meer, J.W.; Allsop, N.W.H.; Bruce, T.; De Rouck, J.; Kortenhaus, A.; Pullen, T.; Schüttrumpf, H.; Troch, P.; Zanuttigh, B. EurOtop 2018. Manual on Wave Overtopping of Sea Defences and Related Structures. An Overtopping Manual Largely Based on European Research, but for Worldwide Application; Environment Agency: Bristol, UK, 2018.
- Troch, P.; Geeraerts, J.; van de Walle, B.; De Rouck, J.; Van Damme, L.; Allsop, N.W.H.; Franco, L. Full-scale wave-overtopping measurements on the Zeebrugge rubble mound breakwater. Coast. Eng. 2004, 51, 609–628. [Google Scholar] [CrossRef]
- Briganti, R.; Bellotti, G.; Franco, L.; De Rouck, J.; Geeraerts, J. Field measurements of wave overtopping at the rubble mound breakwater of Rome Ostia yacht harbour. Coast. Eng. 2005, 52, 1155–1174. [Google Scholar] [CrossRef]
- Pullen, T.; Allsop, N.W.H.; Bruce, T.; Pearson, J. Field and laboratory measurements of mean overtopping discharges and spatial distributions at vertical seawalls. Coast. Eng. 2009, 56, 121–140. [Google Scholar] [CrossRef]
- Franco, L.; Geeraerts, J.; Briganti, R.; Willems, M.; Bellotti, G.; De Rouck, J. Prototype measurements and small-scale model tests of wave overtopping at shallow rubble-mound breakwaters: The Ostia-Rome yacht harbour case. Coast. Eng. 2009, 56, 154–165. [Google Scholar] [CrossRef]
- Pearson, J.; Bruce, T.; Allsop, N.W.H. Prediction of wave overtopping at steep seawalls—Variabilities and uncertainties. In Proceedings of the Fourth International Symposium on Ocean Wave Measurement and Analysis, San Francisco, CA, USA, 2–6 September 2001; Volume 1, pp. 1797–1808. [Google Scholar]
- Van Gent, M.R.A.; van den Boogaard, H.F.P.; Pozueta, B.; Medina, J.R. Neural network modelling of wave overtopping at coastal structures. Coast. Eng. 2007, 54, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Reis, M.T.; Neves, M.G.; Hedges, T. Investigating the Lengths of Scale Model Tests to Determine Mean Wave Overtopping Discharges. Coast. Eng. J. 2008, 50, 441–462. [Google Scholar] [CrossRef]
- Bruce, T.; van der Meer, J.W.; Franco, L.; Pearson, J.M. Overtopping performance of different armour units for rubble mound breakwaters. Coast. Eng. 2009, 56, 166–179. [Google Scholar] [CrossRef]
- Victor, L.; van der Meer, J.W.; Troch, P. Probability distribution of individual wave overtopping volumes for smooth impermeable steep slopes with low crest freeboards. Coast. Eng. 2012, 64, 87–101. [Google Scholar] [CrossRef]
- Nørgaard, J.Q.H.; Lykke Andersen, T.; Burcharth, H.F. Distribution of individual wave overtopping volumes in shallow water wave conditions. Coast. Eng. 2014, 83, 15–23. [Google Scholar] [CrossRef]
- Van Doorslaer, K.; Romano, A.; De Rouck, J.; Kortenhaus, A. Impacts on a storm wall caused by non-breaking waves overtopping a smooth dike slope. Coast. Eng. 2017, 120, 93–111. [Google Scholar] [CrossRef]
- Martinelli, L.; Ruol, P.; Volpato, M.; Favaretto, C.; Castellino, M.; De Girolamo, P.; Franco, L.; Romano, A.; Sammarco, P. Experimental investigation on non-breaking wave forces and overtopping at the recurved parapets of vertical breakwaters. Coast. Eng. 2018, 141, 52–67. [Google Scholar] [CrossRef]
- Van der Meer, J.W.; Verhaeghe, H.; Steendam, G.J. The new wave overtopping database for coastal structures. Coast. Eng. 2009, 56, 108–120. [Google Scholar] [CrossRef]
- Dodd, N. A numerical model of wave run-up, overtopping and regeneration. J. Waterw. Port Coast. Ocean Eng. 1998, 124, 73–81. [Google Scholar] [CrossRef]
- Hubbard, M.E.; Dodd, N. A 2-d numerical model of wave run-up and overtopping. Coast. Eng. 2002, 47, 1–26. [Google Scholar] [CrossRef]
- Reeve, D.E.; Soliman, A.; Lin, P.Z. Numerical study of combined overflow and wave overtopping over a smooth impremeable seawall. Coast. Eng. 2008, 55, 155–166. [Google Scholar] [CrossRef]
- Ingram, D.M.; Gao, F.; Causon, D.M.; Mingham, C.G.; Troch, P. Numerical investigations of wave overtopping at coastal structures. Coast. Eng. 2009, 56, 190–202. [Google Scholar] [CrossRef]
- Tonelli, M.; Petti, M. Numerical simulation of wave overtopping at coastal dukes and low-crested structures by means of a shock-capturing Boussinesq model. Coast. Eng. 2013, 79, 75–88. [Google Scholar] [CrossRef]
- Suzuki, T.; Altomare, C.; Veale, W.; Verwaest, T.; Trouw, K.; Troch, P.; Zijlema, M. Efficent and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH. Coast. Eng. 2017, 122, 108–123. [Google Scholar] [CrossRef]
- Akbari, H. Simulation of wave overtopping using an improved SPH method. Coast. Eng. 2017, 126, 51–68. [Google Scholar] [CrossRef]
- Castellino, M.; Sammarco, P.; Romano, A.; Martinelli, L.; Ruol, P.; Franco, L.; De Girolamo, P. Large impulsive forces on recurved parapets under non-breaking waves. A numerical study. Coast. Eng. 2018, 136, 1–15. [Google Scholar] [CrossRef]
- McCabe, M.V.; Stansby, P.K.; Apsley, D.D. Coupled wave action and shallow-water modelling for random wave runup on a slope. J. Hydraul. Res. 2011, 49, 512–522. [Google Scholar] [CrossRef]
- McCabe, M.V.; Stansby, P.K.; Apsley, D.D. Random wave runup and overtopping a steep sea wall: Shallow-water and Boussinesq modelling with generalised breaking and wall impact algorithms validated against laboratory and field measurements. Coast. Eng. 2013, 74, 33–49. [Google Scholar] [CrossRef]
- Williams, H.E.; Briganti, R.; Pullen, T. The role of offshore boundary conditions in the uncertainty of numerical prediction of wave overtopping using nonlinear shallow water Equations. Coast. Eng. 2014, 89, 30–44. [Google Scholar] [CrossRef]
- Williams, H.E.; Briganti, R.; Pullen, T.; Dodd, N. The Uncertainty in the Prediction of the Distribution of Individual Wave Overtopping Volumes Using a Nonlinear Shallow Water Equation Solver. J. Coast. Res. 2016, 32, 946–953. [Google Scholar] [CrossRef]
- Palemón-Arcos, L.; Torres-Freyermuth, A.; Pedrozo-Acuña, A.; Salles, P. On the role of uncertainty for the study of wave–structure interaction. Coast. Eng. 2015, 106, 32–41. [Google Scholar] [CrossRef]
- Romano, A.; Bellotti, G.; Briganti, R.; Franco, L. Uncertainties in the physical modelling of the wave overtopping over a rubble mound breakwater: The role of the seeding number and of the test duration. Coast. Eng. 2015, 103, 15–21. [Google Scholar] [CrossRef]
- Hughes, S. Physical Models and Laboratory Techniques in Coastal Engineering; World Scientific: New York, NY, USA, 1993. [Google Scholar]
- Longuet-Higgins, M.S. On the statistical distribution of the heights of sea waves. J. Mar. Res. 1952, 9, 245–266. [Google Scholar]
- Battjes, J.A.; Groenendijk, H.W. Wave height distributions on shallow foreshores. Coast. Eng. 2000, 40, 161–182. [Google Scholar] [CrossRef]
- Williams, H.E. Uncertainty in the Prediction of Overtopping Parameters in Numerical and Physical Models due to Offshore Spectral Boundary Conditions. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2015. [Google Scholar]
- Van der Meer, J.; Janssen, J. Wave Run-Up and Wave Overtopping at Dikes and Revetments; Delft Hydraulics: Delft, The Netherlands, 1994. [Google Scholar]
Test | Paddle | Toe | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d | |||||||||||||
(m) | (s) | (s) | (-) | (-) | (-) | (-) | (m) | (s) | (m) | (m) | (-) | (-) | |
TS01-SS | 0.06 | 0.92 | 1.01 | 0.22 | 0.27 | 0.045 | 1.00 | 0.043 | 0.98 | 0.06 | 0.09 | 0.48 | 1.40 |
TS05-SS | 0.05 | 0.85 | 0.93 | 0.22 | 0.22 | 0.044 | 1.20 | 0.038 | 0.89 | 0.06 | 0.09 | 0.42 | 1.58 |
TS02-SS | 0.04 | 0.78 | 0.86 | 0.22 | 0.18 | 0.042 | 1.50 | 0.032 | 0.78 | 0.06 | 0.09 | 0.36 | 1.88 |
TS03-SS | 0.03 | 0.64 | 0.70 | 0.22 | 0.14 | 0.047 | 2.00 | 0.020 | 0.77 | 0.06 | 0.09 | 0.22 | 3.00 |
TS01-VW | 0.06 | 0.92 | 1.01 | 0.22 | 0.27 | 0.045 | 1.00 | 0.043 | 0.98 | 0.06 | 0.09 | 0.48 | 1.40 |
TS07-VW | 0.05 | 1.13 | 1.24 | 0.22 | 0.22 | 0.025 | 1.20 | 0.040 | 1.33 | 0.06 | 0.09 | 0.44 | 1.50 |
TS05-VW | 0.05 | 0.85 | 0.93 | 0.22 | 0.22 | 0.044 | 1.20 | 0.038 | 0.89 | 0.06 | 0.09 | 0.42 | 1.58 |
TS02-VW | 0.04 | 0.78 | 0.86 | 0.22 | 0.18 | 0.042 | 1.50 | 0.032 | 0.78 | 0.06 | 0.09 | 0.36 | 1.88 |
Test | ||
---|---|---|
TS01-SS | ||
TS02-SS | ||
TS03-SS | ||
TS05-SS | ||
TS01-VW | ||
TS02-VW | ||
TS05-VW | ||
TS07-VW |
Test | Experimental | Empirical | |
---|---|---|---|
TS01-SS | |||
TS02-SS | |||
TS03-SS | |||
TS05-SS | |||
TS01-VW | |||
TS02-VW | |||
TS05-VW | |||
TS07-VW |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, H.E.; Briganti, R.; Romano, A.; Dodd, N. Experimental Analysis of Wave Overtopping: A New Small Scale Laboratory Dataset for the Assessment of Uncertainty for Smooth Sloped and Vertical Coastal Structures. J. Mar. Sci. Eng. 2019, 7, 217. https://doi.org/10.3390/jmse7070217
Williams HE, Briganti R, Romano A, Dodd N. Experimental Analysis of Wave Overtopping: A New Small Scale Laboratory Dataset for the Assessment of Uncertainty for Smooth Sloped and Vertical Coastal Structures. Journal of Marine Science and Engineering. 2019; 7(7):217. https://doi.org/10.3390/jmse7070217
Chicago/Turabian StyleWilliams, Hannah E, Riccardo Briganti, Alessandro Romano, and Nicholas Dodd. 2019. "Experimental Analysis of Wave Overtopping: A New Small Scale Laboratory Dataset for the Assessment of Uncertainty for Smooth Sloped and Vertical Coastal Structures" Journal of Marine Science and Engineering 7, no. 7: 217. https://doi.org/10.3390/jmse7070217
APA StyleWilliams, H. E., Briganti, R., Romano, A., & Dodd, N. (2019). Experimental Analysis of Wave Overtopping: A New Small Scale Laboratory Dataset for the Assessment of Uncertainty for Smooth Sloped and Vertical Coastal Structures. Journal of Marine Science and Engineering, 7(7), 217. https://doi.org/10.3390/jmse7070217