Wave Energy in Tropical Regions: Deployment Challenges, Environmental and Social Perspectives
Abstract
:1. Introduction
2. Overview of Wave Energy in Tropical Regions
2.1. Resource Availability in Tropical Regions
2.2. Wave Energy Conversion
- Wave-activated bodies: These partially floating devices are generally arranged parallel to the direction of the waves. Articulated, they follow the motion of the waves and extract energy through hydraulic or mechanical transmission. Floating devices of this type include the Pelamis [6], Anaconda [41], and Salter Duck [42]. Fixed devices of this type include the WaveRoller [43] and Pendulum [44,45].
- Point absorbers: These floating or submerged bodies oscillate relative to the wave motion and are even capable of taking advantage of multi-directional waves. The device consists of a floater and an absorber unit, where the power take-off is connected. Examples of this type of WEC are the AquaBoy [46] and Archimedes [47].
- Oscillating water columns: These WECs capture the pressurized air derived from the oscillation of waves inside a chamber. This air expands and retracts horizontally, activating an air turbine. Floating and fixed examples of this type are the Backward Bent Duct Buoy (BBDB, [48]), the PICO [49], and U-OWC [50].
- Overtopping: This type of device uses the variations in potential energy of a water reservoir to activate a submerged turbine. The variations in potential energy are produced by wave overtopping onto a structure. Floating and fixed devices of this type are the Wave Dragon [51], the Sea Slot-Cone Generator devices [52], and Overtopping Breakwater for Energy Conversion (OBREC, [53]).
2.3. Qualitative Consideration of Devices for Tropical Regions: India
2.4. Quantitative Analysis to Select Suitable WECs at Different Tropical Locations
3. Technical Challenges for Wave Energy Harvesting
3.1. Technological Development Stage
3.1.1. Performance Improvement
3.1.2. Cost Reduction
3.1.3. Adverse Environmental Conditions
3.2. Deployment Stage
3.2.1. Identification of Sites
3.2.2. WEC Selection
3.2.3. Installation of WECs
3.3. Operation and Maintenance Stage
3.3.1. Performance and Survivability
3.3.2. Maintenance
4. Environmental and Social Challenges for Wave Energy Harvesting
4.1. Ecological Challenges
4.1.1. Megadiversity of Coastal Tropical Zones
4.1.2. Data Gap and Monitoring Efforts
4.1.3. Cumulative Impacts
4.2. Social Challenges
5. The Mexican Strategy for MRE
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CEMIE-Oceano | Centre for Innovation in Renewable Energy from the Ocean |
Hs | Significant wave height |
HDI | Human development index |
IRENA | International Renewable Energy Agency |
LECZ | Low elevation areas in coastal zones |
MRE | Marine renewable energies |
OE | Ocean Energy Buoy (device name) |
OES | Ocean Energy Systems of the International Energy Agency |
OWC | Oscillating water column |
OV | Overtopping (principle of operation of a WEC) |
PA | Point absorber (principle of operation of a WEC) |
PPC | Pontoon Power Converter (device name) |
PTO | Power take-off from a device |
T01 | Energetic wave period |
UNEP | United Nations Environmental Program |
W | Watts, (MW megawatts, kW, kilowatts) |
WAB | Wave activated body (principle of operation of a WEC) |
WEC | wave energy converter |
References
- Mustapa, M.A.; Yaakob, O.B.; Ahmed, Y.M.; Rheem, C.K.; Koh, K.K.; Adnan, F.A. Wave energy device and breakwater integration: A review. Renew. Sustain. Energy Rev. 2017, 77, 43–58. [Google Scholar] [CrossRef]
- Bray, J.W.; Fair, R.; Haran, K. Wind and ocean power generators. IEEE Trans. Appl. Supercond. 2014, 24, 5200407. [Google Scholar] [CrossRef]
- Falnes, J.; Lillebekken, P.M. Budal’s latching-controlled-buoy type wave-power plant. In Proceedings of the 5th European Wave Energy Conference, Cork, Ireland, 17–20 September 2003; pp. 233–244. [Google Scholar]
- Aderinto, T.; Li, H. Ocean wave energy converters: Status and challenges. Energies 2018, 11, 1250. [Google Scholar] [CrossRef]
- EMEC (The European Marine Energy Centre) Marine Energy. Available online: http://www.emec.org.uk/marine-energy/ (accessed on 28 February 2019).
- Bahaj, A.S. Generating electricity from the oceans. Renew. Sustain. Energy Rev. 2011, 15, 3399–3416. [Google Scholar] [CrossRef]
- Vega, L.A. Ocean thermal energy conversion primer. Mar. Technol. Soc. J. 2009, 36, 25–35. [Google Scholar] [CrossRef]
- Uehara, H.; Miyara, A.; Ikegami, Y.; Nakaoka, T. Performance analysis of an OTEC plant and a desalination plant using an integrated hybrid cycle. J. Sol. Energy Eng. 1996, 118, 115–122. [Google Scholar] [CrossRef]
- Vega, L.A.; Michaelis, D. First generation 50 MW OTEC plantship for the production of electricity and desalinated water. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 3–6 May 2010. [Google Scholar]
- Jia, Z.; Wang, B.; Song, S.; Fan, Y. Blue energy: Current technologies for sustainable power generation from water salinity gradient. Renew. Sustain. Energy Rev. 2014, 31, 91–100. [Google Scholar] [CrossRef]
- Stancanelli, L.M.; Musumeci, R.E.; Cavallaro, L.; Foti, E. A small scale pressure retarded osmosis power plant: Dynamics of the brackish effluent discharge along the coast. Ocean Eng. 2017, 130, 417–428. [Google Scholar] [CrossRef]
- OES Web SIG. Offshore-Installations Worldwide. Available online: https://www.ocean-energy-systems.org/ocean-energy-in-the-world/gis-map/ (accessed on 14 December 2018).
- Val, A.L.; De Almeida-Val, V.M.F.; Randall, D.J. Tropical environment. In The Physiology of Tropical Fishes; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–45. [Google Scholar]
- Purba, N.P.; Kelvin, J.; Sandro, R.; Gibran, S.; Permata, R.A.I.; Maulida, F.; Martasuganda, M.K. Suitable locations of Ocean Renewable Energy (ORE) in Indonesia region-GIS approached. Energy Procedia 2015, 65, 230–238. [Google Scholar] [CrossRef]
- Sandro, R.; Arnudin; Tussadiah, A.; Utamy, R.M.; Pridina, N.; Afifah, L.N. Study of wind, tidal wave and current potential in sunda strait as an alternative energy. Energy Procedia 2014, 47, 242–249. [Google Scholar] [CrossRef]
- Quitoras, M.R.D.; Abundo, M.L.S.; Danao, L.A.M. A techno-economic assessment of wave energy resources in the Philippines. Renew. Sustain. Energy Rev. 2018, 88, 68–81. [Google Scholar] [CrossRef]
- Sannasiraj, S.A.; Sundar, V. Assessment of wave energy potential and its harvesting approach along the Indian coast. Renew. Energy 2016, 99, 398–409. [Google Scholar] [CrossRef]
- Hemer, M.A.; Manasseh, R.; McInnes, K.L.; Penesis, I.; Pitman, T. Perspectives on a way forward for ocean renewable energy in Australia. Renew. Energy 2018, 127, 733–745. [Google Scholar] [CrossRef]
- SEA Sustainable Energy Solutions for South African Local Government: A Practical Guide. Cape Town: Sustainable Energy Africa. Available online: https://www.sustainable.org.za (accessed on 10 December 2018).
- Joubert, J.R.; Niekerk, J.L. Van recent developments in wave energy along the coast of southern Africa. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009; pp. 1096–1100. [Google Scholar]
- Osorio, A.F.; Ortega, S.; Arango-Aramburo, S. Assessment of the marine power potential in Colombia. Renew. Sustain. Energy Rev. 2016, 53, 966–977. [Google Scholar] [CrossRef]
- Hernández-Fontes, J.V.; Felix, A.; Mendoza, E.; Rodríguez Cueto, Y.S. On the marine energy resources of Mexico. J. Mar. Sci. Technol. 2019, in press. [Google Scholar]
- Gepts, P. Tropical environments, biodiversity, and the origin of crops. In Genomics of Tropical Crop Plants; Springer: Cham, Switzerland, 2008. [Google Scholar]
- Riefolo, L.; Lanfredi, C.; Azzellino, A.; Vicinanza, D. Environmental impact assessment of wave energy converters: A review. In Proceedings of the International Conference on Applied Coastal Research SCACR, Florence, Italy, 28 September–1 October 2015. [Google Scholar]
- Margheritini, L.; Hansen, A.M.; Frigaard, P. A method for EIA scoping of wave energy converters-based on classification of the used technology. Environ. Impact Assess. Rev. 2012, 32, 33–44. [Google Scholar] [CrossRef]
- Andersen, K.; Chapman, A.; Hareide, N.R.; Folkestad, A.O.; Sparrevik, E.; Langhamer, O. Environmental monitoring at the maren wave power test site off the Island of Runde, Western Norway: Planning and design. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009; pp. 1029–1038. [Google Scholar]
- Cornett, A.M. A global wave energy resource assessment. Sea Technol. 2009, 50, 59–64. [Google Scholar]
- Mo̸rk, G.; Barstow, S.; Kabuth, A.; Pontes, M.T. Assessing the global wave energy potential. In Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6–11 June 2010; Volume 3, pp. 447–454. [Google Scholar]
- Sánchez, A.S.; de Jong, P.; Torres, E.A. Wind, solar and waves’ energy in the NE region of Brazil: Analysis of meteorological parameters related to the load curve of electric demand (In Portuguese). In Proceedings of the Conference CONEM 2012—7th Brazilian National Congress of Mechanical Engineering, São Luis, Brazil, 31 July–3 August 2012. [Google Scholar]
- Zhang, D.; Li, W.; Lin, Y. Wave energy in China: Current status and perspectives. Renew. Energy 2009, 34, 2089–2092. [Google Scholar] [CrossRef]
- Pillai, I.R.; Banerjee, R. Renewable energy in India: Status and potential. Energy 2009, 34, 970–980. [Google Scholar] [CrossRef]
- Muzathik, A.M.; Nik, W.S.; Ibrahim, Z.; Samo, K.B. Wave energy potential of Peninsular Malaysia. J. Eng. Appl. Sci. 2010, 5, 11–23. [Google Scholar]
- Muzathik, A.M.; Wan Nik, W.B.; Samo, K.B.; Ibrahim, M.Z. Ocean wave measurement and wave climate prediction of Peninsular Malaysia. J. Phys. Sci. 2011, 22, 77–92. [Google Scholar]
- Aboobacker, V.M.; Shanas, P.R.; Alsaafani, M.A.; Albarakati, A.M.A. Wave energy resource assessment for Red Sea. Renew. Energy 2017, 114, 46–58. [Google Scholar] [CrossRef]
- Bernardino, M.; Rusu, L.; Guedes Soares, C. Evaluation of the wave energy resources in the Cape Verde Islands. Renew. Energy 2017, 101, 316–326. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, C.; Dong, S. Long-term wind and wave energy resource assessment in the South China sea based on 30-year hindcast data. Ocean Eng. 2018, 163, 58–75. [Google Scholar] [CrossRef]
- Kompor, W.; Ekkawatpanit, C.; Kositgittiwong, D. Assessment of ocean wave energy resource potential in Thailand. Ocean Coast. Manag. 2018, 160, 64–74. [Google Scholar] [CrossRef]
- Rusu, L.; Onea, F. The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power. Renew. Sustain. Energy Rev. 2017, 75, 1348–1362. [Google Scholar] [CrossRef]
- Salter, S.H. Wave power. Nature 1974, 249, 720–724. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Heller, V.; Chaplin, J.; Farley, F. Physical model tests of the anaconda wave energy converter. In Proceedings of the 1st IAHR European Congress, Edinburgh, UK, 4–6 May 2000; Volume 1, pp. 3–8. [Google Scholar]
- Alamian, R.; Shafaghat, R.; Miri, S.J.; Yazdanshenas, N.; Shakeri, M. Evaluation of technologies for harvesting wave energy in Caspian Sea. Renew. Sustain. Energy Rev. 2014, 32, 468–476. [Google Scholar] [CrossRef]
- López, I.; Andreu, J.; Ceballos, S.; De Alegría, I.M.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- He, F.; Huang, Z.; Law, A.W.K. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction. Appl. Energy 2013, 106, 222–231. [Google Scholar] [CrossRef]
- Osanai, S.; Kondo, H.; Mizuno, Y.; Watabe, T. Faesibility tests of new pendular-type wave. In Proceedings of the 25th Conference on Coastal Engineering, Orlando, FL, USA, 2–6 September 1996; Edge, B.L., Ed.; American Society of Civil Engineers: Orlando, FL, USA, 1996; pp. 4591–4600. [Google Scholar]
- Weinstein, A.; Fredrikson, G.; Claeson, L.; Jane, J.M.; Aquaenergy, P.; Nielsen, K.; Sand, M.; Rambbll, J. AquaBuOY-the offshore wave energy converter numerical modeling and optimization. In Proceedings of the Oceans 2003: Celebrating the Past… Teaming Toward the Future, San Diego, CA, USA, 22–26 September 2003; pp. 1988–1995. [Google Scholar]
- Polinder, H.; Damen, M.E.C.; Gardner, F. Design, modelling and test results of the AWS PM linear generator. Eur. Trans. Electr. Power 2005, 15, 245–256. [Google Scholar] [CrossRef]
- Seymour, R.J. (Ed.) Ocean Energy Recovery: The State of the Art; American Society of Civil Engineers: New York, NY, USA, 1992; ISBN 978-0-87262-894-6. [Google Scholar]
- Brito-Melo, A.; Neuman, F.; Sarmento, A.J.N.A. Full-scale data assessment in OWC Pico plant. In Proceedings of the Seventeenth International Offshore and Polar Engineering Conference, Lisbon, Portugal, 1–6 July 2007. [Google Scholar]
- Boccotti, P. On a new wave energy absorber. Ocean Eng. 2003, 30, 1191–1200. [Google Scholar] [CrossRef]
- Kofoed, J.P.; Frigaard, P.; Friis-Madsen, E.; Sørensen, H.C. Prototype testing of the wave energy converter wave dragon. Renew. Energy 2006, 31, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Vicinanza, D.; Margheritini, L.; Kofoed, J.P.; Buccino, M. The SSG wave energy converter: Performance, status and recent developments. Energies 2012, 5, 193–226. [Google Scholar] [CrossRef]
- Contestabile, P.; Iuppa, C.; Di Lauro, E.; Cavallaro, L.; Andersen, T.L.; Vicinanza, D. Wave loadings acting on innovative rubble mound breakwater for overtopping wave energy conversion. Coast. Eng. 2017, 122, 60–74. [Google Scholar] [CrossRef]
- Alifdini, I.; Iskandar, N.A.P.; Nugraha, A.W.; Sugianto, D.N.; Wirasatriya, A.; Widodo, A.B. Analysis of ocean waves in 3 sites potential areas for renewable energy development in Indonesia. Ocean Eng. 2018, 165, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Ocean Energy Systems (OES). An International Vision for Ocean Energy; Ocean Energy Systems: Lisbon, Portugal, 2017. [Google Scholar]
- Ruud, K.; Frank, N. Wave energy technology brief. In Future Energy: Improved, Sustainable and Clean Options for our Planet; Elsevier: Amsterdam, The Netherlands, 2014; pp. 357–382. [Google Scholar]
- Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 887–902. [Google Scholar] [CrossRef] [Green Version]
- Titah-benbouzid, H.; Benbouzid, M.; Titah-benbouzid, H.; Benbouzid, M. Ocean wave energy extraction: Up-to-date technologies to cite this version: HAL Id: Hal-01120777 ocean wave energy extraction: Up-to-date technologies review and evaluation. Int. Rev. Electr. Eng. 2015, 10, 52–61. [Google Scholar]
- Cahill, B.; Lewis, T. Wave energy resource characterization and the evaluation of potential Wave Farm sites. In Proceedings of the Oceans’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011. [Google Scholar]
- Rusu, E.; Onea, F. A review of the technologies for wave energy extraction. Clean Energy 2018, 2, 10–19. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. An Evaluation of the U.S. Department of Energy’s: Marine and Hydrokinetic Resource Assessments; The National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Laws, N.D.; Epps, B.P. Hydrokinetic energy conversion: Technology, research, and outlook. Renew. Sustain. Energy Rev. 2016, 57, 1245–1259. [Google Scholar] [CrossRef] [Green Version]
- De Rose, A.; Buna, M.; Strazza, C.; Olivieri, N.; Stevens, T.; Peeters, L. DG RTD—TRL Project Technology Readiness Level: Guidance Principles for Renewable Energy Technologies Final Report; European Commission: Brussels, Belgium, 2017; ISBN 978-92-79-59753-4. [Google Scholar]
- Faltinsen, O.M. Hydrodynamics of marine and offshore structures. J. Hydrodyn. 2015, 26, 835–847. [Google Scholar] [CrossRef]
- Odd, M.; Faltinsen, M.L.; Greco, M. Slamming in marine applications. J. Eng. Math. 2004, 48, 187–217. [Google Scholar]
- Bhattacharyya, R. Dynamic of Marine Vehicles; John Wiley & Sons, Inc.: New York, NY, USA, 1978. [Google Scholar]
- Saincher, S.; Banerjee, J. Influence of wave breaking on the hydrodynamics of wave energy converters: A review. Renew. Sustain. Energy Rev. 2016, 58, 704–717. [Google Scholar] [CrossRef]
- Bonar, P.A.J.; Bryden, I.G.; Borthwick, A.G.L. Social and ecological impacts of marine energy development. Renew. Sustain. Energy Rev. 2015, 47, 486–495. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.L.; Hesp, P.A.; Catalan, P.; Osorio, A.F.; Martell, R.; Fossati, M.; da Silva, G.; Mariño-Tapia, I.; Pereira, P.; et al. Present and future challenges of coastal erosion in Latin America. J. Coast. Res. 2014, 71, 1–16. [Google Scholar] [CrossRef]
- McCauley, D.J.; Pinsky, M.L.; Palumbi, S.R.; Estes, J.A.; Joyce, F.H.; Warner, R.R. Marine defaunation: Animal loss in the global ocean. Science 2015, 347, 1255641. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.R.; Klein, C.J.; Halpern, B.S.; Venter, O.; Grantham, H.; Kuempel, C.D.; Shumway, N.; Friedlander, A.M.; Possingham, H.P.; Watson, J.E.M. The location and protection status of earth’s diminishing marine wilderness. Curr. Biol. 2018, 28, 2506–2512. [Google Scholar] [CrossRef]
- Silva, R.; Lithgow, D.; Esteves, L.S.; Martínez, M.L.; Moreno-Casasola, P.; Martell, R.; Pereira, P.; Mendoza, E.; Campos-Cascaredo, A.; Winckler Grez, P.; et al. Coastal risk mitigation by green infrastructure in Latin America. Proc. Inst. Civ. Eng. Marit. Eng. 2017, 170, 39–54. [Google Scholar] [CrossRef]
- Yates, K.L.; Schoeman, D.S.; Klein, C.J. Ocean zoning for conservation, fisheries and marine renewable energy: Assessing trade-offs and co-location opportunities. J. Environ. Manag. 2015, 152, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza, E.; Lithgow, D.; Flores, P.; Felix, A.; Simas, T.; Silva, R. A framework to evaluate the environmental impact of OCEAN energy devices. Renew. Sustain. Energy Rev. 2019, 112, 440–449. [Google Scholar] [CrossRef]
- Jenkins, C.N.; Van Houtan, K.S. Global and regional priorities for marine biodiversity protection. Biol. Conserv. 2016, 204, 333–339. [Google Scholar] [CrossRef]
- Neill, S.P.; Robins, P.E.; Fairley, I. The impact of marine renewable energy extraction on sediment dynamics. In Marine Renewable Energy: Resource Characterization and Physical Effects; Springer: Cham, Switzerland, 2017; ISBN 9783319535364. [Google Scholar]
- Boehlert, G.W.; Gill, A.B. Environmental and ecological effects of ocean renewable energy development: A current synthesis. Oceanography 2010, 23, 68–81. [Google Scholar] [CrossRef]
- Copping, A.E.; Sather, N.K.; Hanna, L.; Whiting, J.; Zydlewski, G.B.; Staines, G.; Gill, G.; Hutchison, I.; O’Hagan, A.M.; Simas, T.; et al. Annex IV 2016 State of the Science Report: Environmental Effects of Marine Renewable Energy Development around the World; Ocean Energy Systems: Lisbon, Portugal, 2016; p. 199. [Google Scholar]
- Taormina, B.; Bald, J.; Want, A.; Thouzeau, G.; Lejart, M.; Desroy, N.; Carlier, A. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions. Renew. Sustain. Energy Rev. 2018, 96, 380–391. [Google Scholar] [CrossRef]
- Walsh, J.; Bashir, I.; Garrett, J.K.; Thies, P.R.; Blondel, P.; Johanning, L. Monitoring the condition of marine renewable energy devices through underwater acoustic emissions: Case study of a wave energy converter in Falmouth Bay, UK. Renew. Energy 2017, 102, 205–213. [Google Scholar] [CrossRef]
- UN Environment. Assessing Environmental Impacts—A Global Review of Legislationn, Nairobi, Kenya; UN Environment Law Division and UN Environment World: Nairobi, Kenya, 2018; ISBN 978-92-807-3679-3. [Google Scholar]
- United Nations. UN 7 Affordable and Clean Energy; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Edelman, A.; Gedling, A.; Konovalov, E.; McComiskie, R.; Penny, A.; Roberts, N.; Templeman, S.; Trewin, D. 2014 Report; James Cook University: Cairns, Australia, 2014. [Google Scholar]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef]
- UNDP (United Nations Development Programme). Human Development Index (HDI); United Nations Development Programme: New York, NY, USA, 2018. [Google Scholar]
- UNDP (United Nations Development Programme). Human Development Data. Available online: http://hdr.undp.org/en/data (accessed on 20 December 2018).
- CIESIN (Center for International Earth Science Information Network). Urban-Rural Population and Land Area Estimates Version 2. Available online: http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2 (accessed on 20 December 2018).
- Mendoza, E.; Chávez, X.; Alcérreca-Huerta, J.C.; Silva, R. Hydrodynamic behavior of a new wave energy convertor: The Blow-Jet. Ocean Eng. 2015, 106, 252–260. [Google Scholar] [CrossRef]
Site | Lon | Lat | Continent | Nearest state | Total Theoretical Power (kW/m) |
---|---|---|---|---|---|
W1 | 16°12′ N | 98°34′ W | America | Oaxaca, Mexico | 0–10 |
W2 | 13°00′ S | 76°42′ W | America | Lima, Peru | 10–20 |
W3 | 23°10′ S | 41°34′ W | America | Rio de Janeiro, Brazil | 10–20 |
W4 | 14°44′ N | 17°35′ W | Africa | Dakar, Senegal | 10–20 |
W5 | 6°28′ S | 11°56′ E | Africa | Zaire, Angola | 10–20 |
W6 | 25°19′ S | 46°57′ E | Africa | Anosy, Madagascar | 0–10 |
W7 | 7°37′ N | 77°33′ E | Asia | Tamil Nadu, India | 0–10 |
W8 | 5°12′ S | 103°38′ E | Asia | Lampung, Indonesia | 10–20 |
W9 | 21°24′ S | 114°26′ E | Oceania | Western Australia, Australia | 10–20 |
W10 | 3°2′ S | 142°15′ E | Asia | Sandaun, Papua New Guinea | 0–10 |
W11 | 13°58′ N | 124°27′ E | Asia | Catanduanes, Philippines | 10–20 |
WEC Concept | Type | Depth Range (m) | Mean Wave Power Range (kW/m) | Output Power Range (kW) |
---|---|---|---|---|
Wave activated body | Floating | 2–75 | 10–70 | 68–2250 |
Fixed | 1–40 | 10–50 | 5–100 | |
Point absorber | Floating | 10–2500 | 3.4–80 | 4–500 |
Fixed | 10–43 | 2.8–40 | 221–600 | |
Oscillating water column | Floating | 5–50 | 4–50 | 153–1500 |
Fixed | 5–14.5 | 20–60 | 31.7–2000 | |
Overtopping | Floating | 20–40 | 60 | 625–940 |
Fixed | 6–20 | 14–30 | 49–350 |
Type of WEC | Principle of Operation | Prototype Name | Dimensions (m) | Rated Power (kW) |
---|---|---|---|---|
WECs rated below 1000 kW | WAB | Pelamis | 150 | 750 |
PA | WaveBob | 20 | 1000 | |
PA | Ceto | 7 | 260 | |
PA | SeabasedAB | 3 | 15 | |
OV | Oceantec | 52 | 500 | |
WECs Rated Above 2500 kW | WAB | SeaPower | 16.75 | 3587 |
WAB | WaveStar | 70 | 2709 | |
PA | PPC (Pontoon Power Converter) | 80 | 750 | |
PA | OE (Ocean Energy Buoy) | 50 | 2880 | |
OV | WaveDragon | Not available | 5900 | |
WAB (Wave-Activated Body), PA (Point Absorber), OV (Overtopping) |
Region | Population 2010 | Population 2100 | Population & Extreme Poverty | % LECZ 2010 |
---|---|---|---|---|
Central & Southern Africa | 24,337,645 | 56,629,470 | 54% | 9% |
Northern Africa | 5,651,315 | 14,048,546 | 29% | 16% |
South Asia | 1,241,491,960 | 1,708,470,144 | 33% | 7% |
Southeast Asia | 761,415,061 | 442,509,998 | 14% | 22% |
Caribbean | 36,752,994 | 46,309,629 | 28% | 13% |
Mexico & Central America | 120,925,041 | 198,374,035 | 3% | 8% |
South America | 288,895,347 | 462,802,736 | 6% | 21% |
Continent | ||||
Africa | 29,988,960 | 70,678,016 | - | 12% |
Asia | 2,002,907,021 | 2,150,980,142 | - | 15% |
The Americas | 446,573,382 | 707,486,400 | - | 14% |
Oceania | 36,286,652 | 45,429,637 | - | 26% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felix, A.; V. Hernández-Fontes, J.; Lithgow, D.; Mendoza, E.; Posada, G.; Ring, M.; Silva, R. Wave Energy in Tropical Regions: Deployment Challenges, Environmental and Social Perspectives. J. Mar. Sci. Eng. 2019, 7, 219. https://doi.org/10.3390/jmse7070219
Felix A, V. Hernández-Fontes J, Lithgow D, Mendoza E, Posada G, Ring M, Silva R. Wave Energy in Tropical Regions: Deployment Challenges, Environmental and Social Perspectives. Journal of Marine Science and Engineering. 2019; 7(7):219. https://doi.org/10.3390/jmse7070219
Chicago/Turabian StyleFelix, Angélica, Jassiel V. Hernández-Fontes, Débora Lithgow, Edgar Mendoza, Gregorio Posada, Michael Ring, and Rodolfo Silva. 2019. "Wave Energy in Tropical Regions: Deployment Challenges, Environmental and Social Perspectives" Journal of Marine Science and Engineering 7, no. 7: 219. https://doi.org/10.3390/jmse7070219
APA StyleFelix, A., V. Hernández-Fontes, J., Lithgow, D., Mendoza, E., Posada, G., Ring, M., & Silva, R. (2019). Wave Energy in Tropical Regions: Deployment Challenges, Environmental and Social Perspectives. Journal of Marine Science and Engineering, 7(7), 219. https://doi.org/10.3390/jmse7070219