Ultimate Image Singularities in Oblate Spheroidal Coordinates with Applications in Hydrodynamics
Abstract
:1. Introduction
2. Oblate Spheroidal Coordinates
3. Ultimate Image Singularities in Oblate Spheroidal Coordinates
4. Hydrodynamic Diffraction—The Multipoles of Green’s Function
5. Hydrodynamic Loading on the Spheroid
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weiss, P. On hydrodynamic images; Arbitrary irrotational flow disturbed by a sphere. Proc. Camb. Philos. Soc. 1944, 40, 259–261. [Google Scholar] [CrossRef]
- Butler, S.F.T. A note on Stokes stream function for motion with a spherical boundary. Proc. Camb. Philos. Soc. 1953, 49, 169–174. [Google Scholar] [CrossRef]
- Ludford, G.S.S.; Martinek, J.; Yeh, G.C.K. The sphere theorem in potential theory. Proc. Camb. Philos. Soc. 1955, 51, 393–398. [Google Scholar] [CrossRef]
- Hobson, E. The Theory of Spherical and Ellipsoidal Harmonics; Cambridge University Press: Cambridge, UK, 1931. [Google Scholar]
- Havelock, T.H. The moment on a submerged solid of revolution moving horizontally. Q. J. Mech. Appl. Math. 1952, 5, 129–136. [Google Scholar] [CrossRef]
- Miloh, T. The ultimate image singularities for external ellipsoidal harmonics. Siam J. Appl. Math. 1964, 26, 334–344. [Google Scholar] [CrossRef]
- Chatjigeorgiou, I.K.; Miloh, T. Wave scattering of spheroidal bodies bellow a free surface. J. Ship Res. 2013, 57, 141–154. [Google Scholar] [CrossRef]
- Chatjigeorgiou, I.K.; Miloh, T. Free-surface hydrodynamics of a submerged prolate spheroid in infinite water depth based on the method of multipole expansions. Q. J. Mech. Appl. Math. 2014, 67, 525–552. [Google Scholar] [CrossRef] [Green Version]
- Chatjigeorgiou, I.K.; Miloh, T. Hydrodynamics of submerged prolate spheroids advancing under waves: Wave diffraction with forward speed. J. Fluids Struct. 2014, 49, 202–222. [Google Scholar] [CrossRef]
- Chatjigeorgiou, I.K.; Miloh, T. Hydrodynamic wave resistance and diffraction problems of submerged prolate spheroids based on a Green’s function image singularities method. Eur. J. Mech. B Fluids 2015, 49, 184–196. [Google Scholar] [CrossRef]
- Chatjigeorgiou, I.K.; Miloh, T. Radiation and oblique diffraction by submerged prolate spheroids in water of finite depth. J. Ocean Eng. Mar. Energy 2015, 1, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Chatjigeorgiou, I.K.; Dassios, G.; Mavrakos, S.A.; Miloh, T. A Semi-analytical Formulation for the Hydrodynamic Diffraction by Immersed Ellipsoids. In Proceedings of the 29th International Workshop on Water Waves and Floating Bodies, Osaka, Japan, 20 March–2 April 2014; Kashiwagi, M., Minoura, M., Eds.; pp. 13–16. [Google Scholar]
- Chatjigeorgiou, I.K. Analytical Methods in Marine Hydrodynamics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- WAMIT. User Manual for WAMIT Versions 6.3; 6.3PC, 6.3S, 6.3S-PC; WAMIT: Chestnut Hill, MA, USA, 2006. [Google Scholar]
- Moon, P.; Spencer, D.E. Field Theory Handbook, 2nd ed.; Springer: Berlin, Germany, 1971. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover Publications Inc.: New York, NY, USA, 1970. [Google Scholar]
- Farell, C. On the flow about a spheroid near a plane wall. J. Ship Res. 1971, 15, 246–252. [Google Scholar]
- Wehausen, J.V.; Laitone, E.V. Surface waves. In Handbuch der Physik; Flügge, S., Truesdell, C., Eds.; Springer: Berlin, Germany, 1960; Available online: http://surfacewaves.berkeley.edu/ (accessed on 10 December 2019).
- Linton, C.M. Radiation and diffraction of water waves by a submerged sphere in finite depth. Ocean Eng. 1991, 18, 61–74. [Google Scholar] [CrossRef]
0.1 | 0.45956 | 0.00048 | 0.45958 | 0.00048 | 0.45958 | 0.00048 |
0.2 | 0.84700 | 0.00600 | 0.84700 | 0.00600 | 0.84700 | 0.00600 |
0.3 | 1.17229 | 0.02392 | 1.17238 | 0.02392 | 1.17238 | 0.02392 |
0.4 | 1.43940 | 0.05986 | 1.43955 | 0.05987 | 1.43955 | 0.05987 |
0.5 | 1.64865 | 0.11567 | 1.64874 | 0.11569 | 1.64874 | 0.11569 |
0.6 | 1.79919 | 0.18896 | 1.79923 | 0.18897 | 1.79923 | 0.18897 |
0.7 | 1.89206 | 0.27403 | 1.89210 | 0.27405 | 1.89210 | 0.27405 |
0.8 | 1.92930 | 0.36258 | 1.92939 | 0.36262 | 1.92939 | 0.36262 |
0.9 | 1.91660 | 0.44603 | 1.91681 | 0.44616 | 1.91681 | 0.44616 |
1.0 | 1.86231 | 0.51724 | 1.86270 | 0.51758 | 1.86271 | 0.51758 |
1.5 | 1.29193 | 0.60619 | 1.29221 | 0.60940 | 1.29221 | 0.60942 |
2.0 | 0.75105 | 0.42196 | 0.74870 | 0.42538 | 0.74864 | 0.42546 |
2.5 | 0.41204 | 0.23062 | 0.40948 | 0.23288 | 0.40938 | 0.23294 |
3.0 | 0.21071 | 0.10926 | 0.20807 | 0.11149 | 0.20800 | 0.11152 |
3.5 | 0.09238 | 0.04331 | 0.08899 | 0.04503 | 0.08895 | 0.04504 |
4.0 | 0.02512 | 0.01056 | 0.02061 | 0.01011 | 0.02059 | 0.01011 |
4.5 | −0.00129 | −0.00043 | −0.00738 | −0.00123 | −0.00741 | −0.00330 |
5.0 | −0.01371 | −0.00355 | −0.02090 | −0.00835 | −0.02094 | −0.00848 |
0.1 | −0.00149 | 0.57292 | −0.00149 | 0.57298 | −0.00149 | 0.57299 |
0.2 | −0.01956 | 1.08375 | −0.01956 | 1.08378 | −0.01956 | 1.08378 |
0.3 | −0.08213 | 1.54201 | −0.08218 | 1.54237 | −0.08218 | 1.54237 |
0.4 | −0.21410 | 1.93302 | −0.21426 | 1.93364 | −0.21426 | 1.93365 |
0.5 | −0.42058 | 2.22263 | −0.42075 | 2.22301 | −0.42076 | 2.22301 |
0.6 | −0.67432 | 2.37560 | −0.67443 | 2.37574 | −0.67443 | 2.37575 |
0.7 | −0.92539 | 2.38439 | −0.92552 | 2.38450 | −0.92552 | 2.38450 |
0.8 | −1.12140 | 2.23228 | −1.12169 | 2.27246 | −1.12169 | 2.27246 |
0.9 | −1.23682 | 2.08709 | −1.23752 | 2.08735 | −1.23752 | 2.08735 |
1.0 | −1.27467 | 1.87423 | −1.27604 | 1.87446 | −1.27604 | 1.87446 |
1.5 | −0.91534 | 1.01712 | −0.92016 | 1.01388 | −0.92019 | 1.01386 |
2.0 | −0.49609 | 0.56508 | −0.49885 | 0.55967 | −0.49892 | 0.55953 |
2.5 | −0.23808 | 0.31081 | −0.23947 | 0.30711 | −0.23950 | 0.30694 |
3.0 | −0.10085 | 0.15316 | −0.10217 | 0.15005 | −0.10218 | 0.14996 |
3.5 | −0.03215 | 0.05613 | −0.03254 | 0.05262 | −0.03254 | 0.05259 |
4.0 | 0.00017 | −0.00033 | 0.00268 | −0.00453 | 0.00269 | −0.00455 |
4.5 | 0.00699 | −0.01766 | 0.01229 | −0.02354 | 0.01236 | −0.02355 |
5.0 | 0.00756 | −0.02503 | 0.01495 | −0.03211 | 0.01515 | −0.03212 |
0.1 | 0.00667 | 0.00001 | 0.00668 | 0.00001 | 0.00668 | 0.00001 |
0.2 | 0.02038 | 0.00014 | 0.02038 | 0.00014 | 0.02038 | 0.00014 |
0.3 | 0.03954 | 0.00081 | 0.03956 | 0.00081 | 0.03956 | 0.00081 |
0.4 | 0.06261 | 0.00260 | 0.06266 | 0.00261 | 0.06266 | 0.00261 |
0.5 | 0.08798 | 0.00617 | 0.08801 | 0.00618 | 0.08802 | 0.00618 |
0.6 | 0.11400 | 0.01197 | 0.11402 | 0.01198 | 0.11402 | 0.01198 |
0.7 | 0.13920 | 0.02016 | 0.13921 | 0.02016 | 0.13921 | 0.02016 |
0.8 | 0.16201 | 0.03045 | 0.16203 | 0.03045 | 0.16203 | 0.03045 |
0.9 | 0.18122 | 0.04217 | 0.18126 | 0.04219 | 0.18126 | 0.04219 |
1.0 | 0.19620 | 0.05449 | 0.19631 | 0.05455 | 0.19631 | 0.05455 |
1.5 | 0.21157 | 0.09927 | 0.21215 | 0.10005 | 0.21215 | 0.10005 |
2.0 | 0.17479 | 0.09820 | 0.17491 | 0.09937 | 0.17491 | 0.09941 |
2.5 | 0.13150 | 0.07360 | 0.13107 | 0.07454 | 0.13107 | 0.07458 |
3.0 | 0.09359 | 0.04853 | 0.09280 | 0.04973 | 0.09279 | 0.04975 |
3.5 | 0.06395 | 0.02998 | 0.06272 | 0.03174 | 0.06271 | 0.03175 |
4.0 | 0.04045 | 0.01700 | 0.03870 | 0.01897 | 0.03868 | 0.01900 |
4.5 | 0.02394 | 0.00803 | 0.02176 | 0.00963 | 0.02173 | 0.00967 |
5.0 | 0.01389 | 0.00359 | 0.01119 | 0.00447 | 0.01116 | 0.00452 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatjigeorgiou, I.K.; Loukogeorgaki, E.; Anastasiou, E.; Mantadakis, N. Ultimate Image Singularities in Oblate Spheroidal Coordinates with Applications in Hydrodynamics. J. Mar. Sci. Eng. 2020, 8, 32. https://doi.org/10.3390/jmse8010032
Chatjigeorgiou IK, Loukogeorgaki E, Anastasiou E, Mantadakis N. Ultimate Image Singularities in Oblate Spheroidal Coordinates with Applications in Hydrodynamics. Journal of Marine Science and Engineering. 2020; 8(1):32. https://doi.org/10.3390/jmse8010032
Chicago/Turabian StyleChatjigeorgiou, Ioannis K., Eva Loukogeorgaki, Eirini Anastasiou, and Nikos Mantadakis. 2020. "Ultimate Image Singularities in Oblate Spheroidal Coordinates with Applications in Hydrodynamics" Journal of Marine Science and Engineering 8, no. 1: 32. https://doi.org/10.3390/jmse8010032
APA StyleChatjigeorgiou, I. K., Loukogeorgaki, E., Anastasiou, E., & Mantadakis, N. (2020). Ultimate Image Singularities in Oblate Spheroidal Coordinates with Applications in Hydrodynamics. Journal of Marine Science and Engineering, 8(1), 32. https://doi.org/10.3390/jmse8010032