A Comparison between Coastal Altimetry Data and Tidal Gauge Measurements in the Gulf of Genoa (NW Mediterranean Sea)
Abstract
:1. Introduction
2. Datasets
2.1. Altimetry Data
2.2. Tidal Gauge Data
3. Coastal Sea Level Variability
3.1. Tidal and Infragravity Variability
3.2. Long Period Variability
- −
- Atmospheric pressure as an inverted barometer effect: 80 cm.
- −
- Tsunamis/meteotsunamis, seiches and shelf oscillations: 50 cm.
- −
- Tides: 35 cm.
- −
- Steric level: 10 cm.
4. Comparison between Altimetry and Tidal Gauge Data
4.1. Tidal and Atmospheric Corrections
4.2. Total Water Level Elevation
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Letetrel, C.; Marcos, M.; Martín Míguez, B.; Woppelmann, G. Sea level extremes in Marseilles (NW Mediterranean) during 1885–2008. Cont. Shelf Res. 2010, 30, 1267–1274. [Google Scholar] [CrossRef]
- Godin, G.; Trotti, L. Trieste Water Level 1952–1971: A Study of Tide, Mean Level and Seiches Activities; Miscellaneous Special Publication: Ottawa, ON, Canada, 1975; p. 106. [Google Scholar]
- APAT. Stazioni di Osservazione Meteo–Mareografiche Nella Laguna di Venezia e nell’arco Costiero Nord Adriatico: Rapporti 68/2006; APAT: Venezia, Italy, 2006; 74p. [Google Scholar]
- Cheney, R.E.; Marsh, J.G.; Beckley, B.D. Global mesoscale variability from collinear tracks of SEASAT altimeter data. J. Geophys. Res. Ocean 1983, 88, 4343–4354. [Google Scholar] [CrossRef]
- Didden, N.; Schott, F. Eddies in the North Brazil Current retroflection region observed by Geosat altimetry. J. Geophys. Res. Ocean. 1993, 98, 20121–20131. [Google Scholar] [CrossRef] [Green Version]
- Cipollini, P.; Vignudelli, S.; Lyard, F.; Roblou, L. 15 years of altimetry at various scales over the Mediterranean. In Remote Sensing of the European Seas; Springer: Dordrecht, The Netherlands, 2008; pp. 295–306. [Google Scholar]
- Escudier, R.; Renault, L.; Pascual, A.; Brasseur, P.; Chelton, D.; Beuvier, J. Eddy properties in the Western Mediterranean Sea from satellite altimetry and a numerical simulation. J. Geophys. Res. Ocean 2001, 121, 3990–4006. [Google Scholar] [CrossRef]
- Isern-Fontanet, J.; Garcia-Ladona, E.J.; Font, J. Vortices of the Mediterranean sea: An altimetric perspective. J. Phys. Oceanogr. 2006, 36, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Poulain, P.M.; Menna, M.; Mauri, E. Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J. Phys. Oceanogr. 2012, 42, 973–990. [Google Scholar] [CrossRef]
- Vignudelli, S.; Cipollini, P.; Astraldi, M.; Gasparini, G.P.; Manzella, G. Integrated use of altimeter and in situ data for understanding the water exchanges between the Tyrrhenian and Ligurian Seas. J. Geophys. Res. 2000, 105, 19649–19663. [Google Scholar] [CrossRef]
- Taibi, H.; Haddad, M. Estimating trends of the Mediterranean Sea level changes from tide gauge and satellite altimetry data (1993–2015). J. Oceanogr. Limnol. 2012, 37, 1176–1185. [Google Scholar] [CrossRef]
- Vignudelli, S.; De Basio, F.; Scozzari, A.; Zecchetto, S.; Papa, A. Sea level trends and variability in the Adriatic Sea and around Venice. In Proceedings of the International Association of Geodesy Symposia International Review Workshop On Satellite Altimetry Cal/Val Activities and Applications, Crete, Greece, 23–26 April 2018; pp. 1–10. [Google Scholar]
- Gregory, J.M.; Griffies, S.M.; Hughes, C.W.; Lowe, J.A.; Church, J.A.; Fukimori, I.; Gomez, N.; Kopp, R.E.; Landerer, F.; Le Cozannet, G.; et al. Concepts and terminology for sea level: Mean, variability and change, both local and global. Surv. Geophys. 2019, 40, 1251–1289. [Google Scholar] [CrossRef] [Green Version]
- Wöppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 2016, 54, 64–92. [Google Scholar] [CrossRef] [Green Version]
- Fenoglio-Marc, L.; Braitenberg, C.; Tunini, L. Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry. Phys. Chem. Earth 2012, 40, 47–58. [Google Scholar] [CrossRef]
- Tamisiea, M.E.; Hughes, C.W.; William, S.D.P.; Bingley, R.M. Sea level: Measuring the bounding surfaces of the ocean. Philos. Trans. R. Soc. Acad. 2014, 372, 20130336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vignudelli, S.; Birol, F.; Benveniste, J.; Fu, L.; Picot, N.; Raynal, M.; Roinard, H. Satellite altimetric measurements of sea level in the coastal zone. Surv. Geophys. 2019, 40, 1319–1349. [Google Scholar] [CrossRef]
- Gui, P.; Feng, S.; Jin, Z.T. Coastal sea level changes in Europe from GPS, tide gauge, satellite altimetry and GRACE, 1993–2011. Adv. Space Res. 2013, 51, 1019–1028. [Google Scholar]
- Thomson, R.; Emery, W.J. Data Analysis Methods in Physical Oceanography, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; 716p. [Google Scholar]
- Birol, F.; Fuller, N.; Lyard, F.; Cancet, M.; Niño, F.; Delebecque, C.; Fleury, S.; Toublanc, F.; Melet, A.; Saraceno, M.; et al. Coastal applications from nadir altimetry: Example of the X-TRACK regional products. Adv. Space Res. 2017, 59, 936–953. [Google Scholar] [CrossRef]
- Carrère, L.; Lyard, F.; Cancet, M.; Guillot, A.; Roblou, L. FES2012: A new global tidal model taking advantage of nearly twenty years of altimetry. In Proceeding of the 20 Years of Progress in Radar Altimetry Symposium, Venice, Italy, 24–29 September 2012. [Google Scholar]
- Carrère, L.; Faugère, Y.; Ablain, M. Major improvement of altimetry sea level estimations using pressure derived corrections based on ERA-interim atmospheric reanalysis. Ocean Sci. 2016, 12, 825–842. [Google Scholar] [CrossRef] [Green Version]
- Demarte, M.; Morucci, S.; Repetti, L.; Orasi, A. Il mareografo fondamentale di Genova Analisi delle variazioni del livello del mare dal 1884 al 2006. IIM 2007, 3174, 1–36. [Google Scholar]
- Vecchio, A.; Anzidei, M.; Serpelloni, E.; Florindo, F. Natural Variability and Vertical Land Motion Contributions in the Mediterranean Sea-Level Records over the Last Two Centuries and Projections for 2100. Water 2016, 11, 1480. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, L.; Sideris, M.G. Vertical datum unification for the International Height Reference System (IHRS). Geophys. J. Int. 2017, 209, 570–586. [Google Scholar] [CrossRef]
- Pugh, D.; Woodworth, P. Science: Understanding Tides, Surges, Tsunamis and Mean Sea Level Changes; Cambridge University Press: Cambridge, UK, 2014; 407p. [Google Scholar]
- Foreman, M.G.G. Manual for Tidal Heights Analysis and Prediction; Pacific Marine Science Report 77–10; Institute of Ocean Sciences, Patricia Bay: Sydney, BC, Canada, 2004; pp. 1–66. [Google Scholar]
- Caldwell, P. Hourly Sea Level Data Processing and Quality Control Software: Update for 64-bit Microsoft Operating Systems SLP64 User Manual (Version 4.0); Jimar Contrib. No.14-389; University of Hawaii: Honolulu, HI, USA, 2014; 67p. [Google Scholar]
- Istituto Idrografico della Marina. Tavole di Marea 2020, II 3133; IIM: Genova, Italy, 2019; 123p. [Google Scholar]
- Giorgi, M.; Stocchino, C. Les Constantes Harmoniques de Marée du Port de Genes et Leurs Variations. In Proceedings of the Atti XIV Convegno Dell’Associazione Geofisica Italiana, Roma, Italy, 18–19 February 1965; pp. 310–324. [Google Scholar]
- Rabinovich, A.B. Seiches and Harbor Oscillations. In Handbook of Coastal and Ocean Engineering; Kim, Y.C., Ed.; World Scientific Publisher: Singapore, 2009. [Google Scholar]
- Monserrat, S.; Vilibic, I.; Rabinovich, A.B. Meteo-tsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Nat. Hazards Earth Syst. Sci. 2006, 6, 1035–1051. [Google Scholar] [CrossRef]
- Caloi, P.; Spadea, M.C. Sulle oscillazioni libere del Mar Ligure. Ann. Geophys. 1961, 14, 1–13. [Google Scholar]
- Papa, L. A numerical and statistical investigation of a seiche oscillation of the Ligurian Sea. Deutsche Hydrographische Zeitschrift 1981, 34, 15–25. [Google Scholar] [CrossRef]
- Papa, L. A short period rotating seiche of the Ligurian Sea. Oceanol. Acta 1984, 7, 1–4. [Google Scholar]
- Picco, P.; Repetti, L.; Santucci, A. Seiches and meteotsunami in the Gulf of Genoa. In Proceeding of the Fourtheenth International MEDCOAST 19 Congress on Coastal and Marine Sciences Engineering, Management and Conservation, Marmaris, Turkey, 22–26 October 2019; pp. 523–530. [Google Scholar]
- Picco, P.; Schiano, M.E.; Incardone, S.; Repetti, L.; Demarte, M.; Pensieri, S.; Bozzano, R. Detection and Characterization of Meteo-tsunamis in the Gulf of Genoa. J. Mar. Sci. Eng. 2019, 7, 275. [Google Scholar] [CrossRef] [Green Version]
- Pedemonte, L.; Corazza, M.; Forestieri, A.; Turato, B. Rapporto di evento meteorologico del 27–30/10/20182. ARPAL 2019, 10, 16. [Google Scholar]
- Iengo., A.; Del Giudice, T. Analysis of the 29 October 2018 Sea-Storm in the Ligurian Sea. In Proceedings of the 2019 IMEKO TC-19 International Workshop on Metrology for the Sea Genoa (IMEKO), Genoa, Italy, 3–5 October 2019. [Google Scholar]
- Bellantone, P.; Corazza, M.; Grieco, L.; Turato, B.; Soatto, F.; Giannoni, F. Rapporto di evento meteorologico del 13-14/10/2016. ARPA 2017, 10, 1–21. [Google Scholar]
- Pugh, D. Tides, Surges and Mean Sea Level: A Handbook for Engineers and Scientists; John Wiley & Sons: Chichester, UK, 1987; 472p. [Google Scholar]
- Oddo, P.; Bonaduce, A.; Pinardi, N.; Guarnieri, A. Sensitivity of the Mediterranean sea level to atmospheric pressure and free surface elevation numerical formulation in NEMO. Geosci. Model Dev. 2014, 7, 3001–3015. [Google Scholar] [CrossRef] [Green Version]
- Carrère, L.; Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing comparisons with observations. Geophys. Res. Lett. 2003, 30, 1275. [Google Scholar] [CrossRef] [Green Version]
- Marcos, M.; Tsimplis, M.N. Variations of the seasonal sea level cycle in southern Europe. J. Geophys. Res. 2007, 112, C12011. [Google Scholar] [CrossRef]
- Picco, P.; Cappelletti, A.; Sparnocchia, S.; Schiano, M.E.; Pensieri, S.; Bozzano, R. Upper layer current variability in the Central Ligurian Sea. Ocean Sci. 2010, 6, 825–836. [Google Scholar] [CrossRef]
- Garcıa, D.; Chao, B.F.; Del Rıo, J.; Vigo, I.; Garcia-Lafuente, J. On the steric and mass-induced contributions to the annual sea level variations in the Mediterranean Sea. J. Geophys. Res. 2006, 111, C09030. [Google Scholar] [CrossRef] [Green Version]
- Stammer, D.; Ray, R.D.; Andersen, O.B.; Arbic, B.K.; Bosch, W.; Carrère, L.; Cheng, Y.; Chinn, D.S.; Dushaw, B.D.; Egbert, G.D.; et al. Accuracy assessment of global barotropic ocean tidal models. Rev. Geophys. 2014, 52, 243–282. [Google Scholar] [CrossRef] [Green Version]
- Dobricic, S.; Dufau, C.; Oddo, P.; Pinardi, N.; Rio, M.H. Assimilation of SLA along track observations in the Mediterranean with an oceanographic model forced by atmospheric pressure. Ocean Sci. 2012, 8, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Pinardi, N.; Bonaduce, A.; Navarra, A.; Dobricic, S.; Oddo, P. The mean sea level equation and its application to the Mediterranean Sea. J. Clim. 2014, 27, 442–447. [Google Scholar] [CrossRef]
- Bonaduce, A.; Pinardi, N.; Oddo, P.; Spada, G.; Larnicol, G. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Clim. Dyn. 2016. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Weisberg, R.H.; Vignudelli, S.; Roblou, L.; Merz, C.R. Comparison of the X-TRACK altimetry estimated currents with moored ADCP and HF radar observations on the West Florida Shelf. Adv. Space Res. 2012, 50, 1085–1098. [Google Scholar] [CrossRef]
- Guinehut, S.; Le Traon, P.Y.; Larnicol, G. What can we learn from Global Altimetry/Hydrography comparisons? Geophys. Res. Lett. 2006, 33, L10604. [Google Scholar] [CrossRef] [Green Version]
- Kurkin, A.O.; Kurkina, O.; Rybin, A.; Talipova, T. Comparative analysis of the first baroclinic Rossby radius in the Baltic, Black, Okhotsk, and Mediterranean seas. Russ. J. Earth Sci. 2020, 20, 4. [Google Scholar] [CrossRef]
Point | Lat (°E) | Lon (°N) | Sea-Depth | Dist-TG (m) | Dist-Coast (m) | Start dd/mm/yyyy | Stop dd/mm/yyyy | N Data 2009 |
---|---|---|---|---|---|---|---|---|
269 | 44.1481 | 8.9542 | 988 | 29,445 | 24,444 | 8/8/1993 | 24/9/2016 | 220 |
270 | 44.1951 | 8.9143 | 1259 | 24,137 | 21,935 | 8/8/1993 | 24/9/2016 | 222 |
271 | 44.2416 | 8.8745 | 704 | 19,375 | 17,379 | 20/5/1993 | 24/9/2016 | 228 |
272 | 44.2876 | 8.8349 | 1046 | 15,577 | 13,312 | 20/5/1993 | 24/9/2016 | 222 |
273 | 44.3342 | 8.7950 | 293 | 13,472 | 9167 | 3/1/1994 | 24/9/2016 | 180 |
mean | 44.24 | 8.87 | 20,401 | 17,247 | 274 * |
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|
13,703 | 273 | 6887 | 2380 | 709 | 2262 | 870 | 0 | 743 | 3675 | 2381 |
SEA | LEVEL | (m) | ATM | PRES | (hPA) | |||
---|---|---|---|---|---|---|---|---|
mean | max | min | std | mean | max | min | std | |
2009 | 0.119 | 0.662 | −0.295 | 0.126 | 1014.2 | 1032.6 | 978.5 | 7.12 |
2010 | 0.167 | 0.689 | −0.201 | 0.128 | 1013.3 | 1034.7 | 983.2 | 7.26 |
2011 | 0.087 | 0.525 | −0.250 | 0.108 | 1017.8 | 1038.8 | 990.8 | 6.50 |
2012 | 0.096 | 0.666 | −0.319 | 0.132 | 1016.3 | 1035.5 | 985.5 | 7.35 |
2013 | 0.117 | 0.538 | −0.238 | 0.116 | 1015.2 | 1037.9 | 985.7 | 7.86 |
2014 | 0.144 | 0.629 | −0.220 | 0.117 | 1015.1 | 1037.7 | 993.5 | 6.22 |
2015 | 0.083 | 0.515 | −0.330 | 0.116 | 1018.1 | 1038.1 | 980.5 | 8.48 |
2016 | 0.097 | 0.557 | −0.297 | 0.112 | 1016.7 | 1040.3 | 993.4 | 7.93 |
2017 | 0.064 | 0.512 | −0.266 | 0.109 | 1017.2 | 1037.8 | 987.6 | 6.69 |
2018 | 0.124 | 0.854 | −0.374 | 0.115 | 1015.1 | 1038.0 | 981.8 | 6.61 |
2019 | 0.118 | 0.770 | −0.302 | 0.135 | 1015.2 | 1038.3 | 984.9 | 7.66 |
Average 2009/19 | 0.111 | 1015.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picco, P.; Vignudelli, S.; Repetti, L. A Comparison between Coastal Altimetry Data and Tidal Gauge Measurements in the Gulf of Genoa (NW Mediterranean Sea). J. Mar. Sci. Eng. 2020, 8, 862. https://doi.org/10.3390/jmse8110862
Picco P, Vignudelli S, Repetti L. A Comparison between Coastal Altimetry Data and Tidal Gauge Measurements in the Gulf of Genoa (NW Mediterranean Sea). Journal of Marine Science and Engineering. 2020; 8(11):862. https://doi.org/10.3390/jmse8110862
Chicago/Turabian StylePicco, Paola, Stefano Vignudelli, and Luca Repetti. 2020. "A Comparison between Coastal Altimetry Data and Tidal Gauge Measurements in the Gulf of Genoa (NW Mediterranean Sea)" Journal of Marine Science and Engineering 8, no. 11: 862. https://doi.org/10.3390/jmse8110862
APA StylePicco, P., Vignudelli, S., & Repetti, L. (2020). A Comparison between Coastal Altimetry Data and Tidal Gauge Measurements in the Gulf of Genoa (NW Mediterranean Sea). Journal of Marine Science and Engineering, 8(11), 862. https://doi.org/10.3390/jmse8110862