Effect of UV and Visible Radiation on Optical Properties of Chromophoric Dissolved Organic Matter Released by Emiliania huxleyi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Emiliania huxleyi Culture and Samples Preparation
2.2. Irradiation Experiment
- WG280: 280–800 nm, representing the full sun spectrum (hereinafter FS).
- WG295: 295–800 nm (hereinafter I295–800).
- WG305: 305–800 nm (hereinafter I305–800).
- WG320: 320–800 nm (hereinafter I320–800).
- WG395: 395–800 nm, representing the visible radiation (hereinafter Vis).
2.3. Dissolved Organic Carbon (DOC) Measurements
2.4. CDOM Absorbance
2.5. Fluorescence Emission Spectra
- 290 nm, because it is selective for tryptophan residues (emission was recorded between 300 and 500 nm) [40]; and,
2.6. Fluorescence EEMs
3. Results
3.1. DOC Concentration
3.2. CDOM Absorption
3.3. Absorption Spectra of Degraded Molecules
- Spectrum of the compounds degraded by FS = spectrum of non-irradiated sample—spectrum of sample irradiated with FS.
- Spectrum of the compounds degraded by Vis = spectrum of non-irradiated sample—spectrum of sample irradiated with Vis (i.e., 395–800 nm).
- Spectrum of the compounds degraded by I295–800 = spectrum of non-irradiated sample—spectrum of sample irradiated with I295–800
- Spectrum of the compounds degraded by UV = spectrum a (degraded by FS)—spectrum b (degraded by Vis).
3.4. CDOM Fluorescence
3.5. Fluorescence Spectra of Molecules Degraded by Irradiation
3.6. CDOM EEMs
4. Discussion
4.1. DOM Photomineralization
4.2. DOM Photobleaching
4.2.1. Absorption Spectra
4.2.2. Irradiation Affects Differently Humic-Like and Protein-Like Substances
4.3. Implications
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carlson:, C.A.; Hansell, D.A. DOM Sources, Sinks, Reactivty, and Budgets. In Biogeochemistry of Marine Dissolved Organic Matter; Academic Press: Cambridge, UK, 2015; pp. 65–126. ISBN 9780124059405. [Google Scholar]
- Mopper, K.; Kieber, D.J.; Stubbins, A. Marine Photochemistry of Organic Matter: Processes and Impacts. Processes and Impacts. In Biogeochemistry of Marine Dissolved Organic Matter, 2nd ed.; Academic Press: Cambridge, UK, 2015; ISBN 9780124059405. [Google Scholar]
- Osburn, C.L.; Retamal, L.; Vincent, W.F. Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea. Mar. Chem. 2009, 115, 10–20. [Google Scholar] [CrossRef]
- Lindell, M.J.; Granéli, H.W.; Bertilsson, S. Seasonal photoreactivity of dissolved organic matter from lakes with contrasting humic content. Can. J. Fish. Aquat. Sci. 2000, 57, 875–885. [Google Scholar] [CrossRef]
- Tedetti, M.; Kawamura, K.; Narukawa, M.; Joux, F.; Charrière, B.; Sempéré, R. Hydroxyl radical-induced photochemical formation of dicarboxylic acids from unsaturated fatty acid (oleic acid) in aqueous solution. J. Photochem. Photobiol. A Chem. 2007, 188, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Gonsior, M.; Peake, B.M.; Cooper, W.T.; Podgorski, D.; D’Andrilli, J.; Cooper, W.J. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 2009, 43, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Ward, C.P.; Cory, R.M. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils. Environ. Sci. Technol. 2016, 50, 3545–3553. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Retuerta, E.; Pulido-Villena, E.; Reche, I. Effects of dissolved organic matter photoproducts and mineral nutrient supply on bacterial growth in Mediterranean inland waters. Microb. Ecol. 2007, 54, 161–169. [Google Scholar] [CrossRef]
- Swan, C.M.; Nelson, N.B.; Siegel, D.A.; Kostadinov, T.S. The effect of surface irradiance on the absorption spectrum of chromophoric dissolved organic matter in the global ocean. Deep. Res. Part I Oceanogr. Res. Pap. 2012, 63, 52–64. [Google Scholar] [CrossRef]
- Núñez-Pons, L.; Avila, C.; Romano, G.; Verde, C.; Giordano, D. UV-protective compounds in marine organisms from the southern ocean. Mar. Drugs 2018, 16, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, M.; Zepp, R. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr. 1997, 42, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Obernosterer, I.; Reitner, B.; Herndl, G.J. Contrasting effects of solar radiation on dissolved organic matter and its bioavailability to marine bacterioplankton. Limnol. Oceanogr. 1999, 44, 1645–1654. [Google Scholar] [CrossRef] [Green Version]
- Tranvik, L.J.; Bertilsson, S. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol. Lett. 2001, 4, 458–463. [Google Scholar] [CrossRef]
- Mopper, K.; Kieber, D.J. Photochemistry and the Cycling of Carbon, Sulfur, Nitrogen and Phosphorus. In Biogeochemistry of Marine Dissolved Organic Matter; Academic Press: Cambridge, UK, 2002. [Google Scholar]
- Zepp, R.G.; Erickson, D.J.; Paul, N.D.; Sulzberger, B. Effects of solar UV radiation and climate change on biogeochemical cycling: Interactions and feedbacks. Photochem. Photobiol. Sci. 2011, 10, 261–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osburn, C.L.; O’Sullivan, D.W.; Boyd, T.J. Increases in the longwave photobleaching of chromophoric dissolved organic matter in coastal waters. Limnol. Oceanogr. 2009, 54, 145–159. [Google Scholar] [CrossRef]
- Timko, S.A.; Maydanov, A.; Pittelli, S.L.; Conte, M.H.; Cooper, W.J.; Koch, B.P.; Schmitt-Kopplin, P.; Gonsior, M. Depth-dependent photodegradation of marine dissolved organic matter. Front. Mar. Sci. 2015, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Zagarese, H.E.; Diaz, M.; Pedrozo, F.; Ferraro, M.; Cravero, W.; Tartarotti, B. Photodegradation of natural organic matter exposed to fluctuating levels of solar radiation. J. Photochem. Photobiol. B Biol. 2001, 61, 35–45. [Google Scholar] [CrossRef]
- Para, J.; Coble, P.G.; Charrière, B.; Tedetti, M.; Fontana, C.; Sempéré, R. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River. Biogeosciences 2010, 7, 4083–4103. [Google Scholar] [CrossRef] [Green Version]
- Tedetti, M.; Joux, F.; Charrière, B.; Mopper, K.; Sempéré, R. Contrasting effects of solar radiation and nitrates on the bioavailability of dissolved organic matter to marine bacteria. J. Photochem. Photobiol. A Chem. 2009, 201, 243–247. [Google Scholar] [CrossRef]
- Moran, M.A.; Sheldon, W.M.; Zepp, R.G. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr. 2000, 45, 1254–1264. [Google Scholar] [CrossRef]
- Blanchet, M.; Fernandez, C.; Joux, F. Photoreactivity of riverine and phytoplanktonic dissolved organic matter and its effects on the dynamics of a bacterial community from the coastal Mediterranean Sea. Prog. Oceanogr. 2018, 163, 82–93. [Google Scholar] [CrossRef]
- Osburn, C.L.; Zagarese, H.E.; Morris, D.P.; Hargreaves, B.R.; Cravero, W.E. Calculation of spectral weighting functions for the solar photobleaching of chromophoric dissolved organic matter in temperate lakes. Limnol. Oceanogr. 2001, 46, 1455–1467. [Google Scholar] [CrossRef]
- Bittar, T.B.; Stubbins, A.; Vieira, A.A.H.; Mopper, K. Characterization and photodegradation of dissolved organic matter (DOM) from a tropical lake and its dominant primary producer, the cyanobacteria Microcystis aeruginosa. Mar. Chem. 2015, 177, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Feng, W.; Song, F.; Li, T.; Guo, W.; Wang, B.B.; Wang, H.; Wu, F. Photodegradation of algae and macrophyte-derived dissolved organic matter: A multi-method assessment of DOM transformation. Limnologica 2019, 77, 125683. [Google Scholar] [CrossRef]
- Winter, A.; Henderiks, J.; Beaufort, L.; Rickaby, R.E.M.; Brown, C.W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 2014, 36, 316–325. [Google Scholar] [CrossRef]
- Winter, A.; Siesser, W.G. Coccolithophores; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Balch, W.M. The ecology, biogeochemistry, and optical properties of coccolithophores. Ann. Rev. Mar. Sci. 2018, 10, 71–98. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; LeRoi, J.-M. Simple procedures for growing SCOR reference microalgal cultures. In Phytoplankton Pigments in Oceanography: Monographs on Oceanographic Methodology; UNESCO: Paris, France, 1997; ISBN 9789231032752. [Google Scholar]
- Fichot, C.G.; Benner, R. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Santinelli, C.; Follett, C.; Retelletti Brogi, S.; Xu, L.; Repeta, D. Carbon isotope measurements reveal unexpected cycling of dissolved organic matter in the deep Mediterranean Sea. Mar. Chem. 2015, 177, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Hansell, D.A. Dissolved Organic Carbon Reference Material Program. Eos. Trans. Am. Geophys. Union 2005, 86, 318. [Google Scholar] [CrossRef]
- Omanović, D.; Santinelli, C.; Marcinek, S.; Gonnelli, M. ASFit—An all-inclusive tool for analysis of UV–Vis spectra of colored dissolved organic matter (CDOM). Comput. Geosci. 2019, 133, 104334. [Google Scholar] [CrossRef]
- Iuculano, F.; Álvarez-Salgado, X.A.; Otero, J.; Catalá, T.S.; Sobrino, C.; Duarte, C.M.; Agustí, S. Patterns and drivers of UV absorbing chromophoric dissolved organic matter in the euphotic layer of the open ocean. Front. Mar. Sci. 2019, 6, 320. [Google Scholar] [CrossRef]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef] [Green Version]
- Peuravuori, J.; Pihlaja, K. Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal. Chim. Acta 1997, 337, 133–149. [Google Scholar] [CrossRef]
- Weishaar, J.; Aiken, G.; Bergamaschi, B.; Fram, M.; Fujii, R.; Mopper, K. Evaluation of specific ultra-violet absorbance as an indicator of the chemical content of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Seritti, A.; Russo, D.; Nannicini, L.; Del Vecchio, R. DOC, absorption and fluorescence properties of estuarine and coastal waters of the Northern Tyrrhenian Sea. Chem. Speciat. Bioavailab. 1998, 10, 95–106. [Google Scholar] [CrossRef]
- Vignudelli, S.; Santinelli, C.; Murru, E. Distributions of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) in coastal waters of the northern Tyrrhenian Sea (Italy). Estuar. Coast. Shelf Sci. 2004, 60, 133–149. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 0387312781. [Google Scholar]
- Lawaetz, A.J.; Stedmon, C.A. Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc. 2009, 63, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Carlson, R.E.; Fritsch, F.N. An Algorithm for Monotone Piecewise Bicubic Interpolation. SIAM J. Numer. Anal. 1989, 26, 230–238. [Google Scholar] [CrossRef]
- Coble, P.G. Marine optical biogeochemistry: The chemistry of ocean color. Chem. Rev. 2007, 107, 402–418. [Google Scholar] [CrossRef]
- Thomas, D.N.; Lara, R.J. Photodegradation of algal derived dissolved organic carbon. Mar. Ecol. Prog. Ser. 1995, 116, 309–310. [Google Scholar] [CrossRef]
- Catalá, T.S.; Martínez-Pérez, A.M.; Nieto-Cid, M.; Álvarez, M.; Otero, J.; Emelianov, M.; Reche, I.; Arístegui, J.; Álvarez-Salgado, X.A. Dissolved Organic Matter (DOM) in the open Mediterranean Sea. I. Basin–wide distribution and drivers of chromophoric DOM. Prog. Oceanogr. 2018, 165, 35–51. [Google Scholar] [CrossRef]
- Galletti, Y.; Gonnelli, M.; Retelletti Brogi, S.; Vestri, S.; Santinelli, C. DOM dynamics in open waters of the Mediterranean Sea: New insights from optical properties. Deep. Res. Part I Oceanogr. Res. Pap. 2019, 144, 95–114. [Google Scholar] [CrossRef]
- Granskog, M.A.; Nomura, D.; Müller, S.; Krell, A.; Toyota, T.; Hattorl, H. Evidence for significant protein-like dissolved organic matter accumulation in Sea of Okhotsk sea ice. Ann. Glaciol. 2015, 56, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, B.; Dera, J. Light Absorption in Sea Water; Springer: New York, NY, USA, 2007; Volume 33, ISBN1 0387307532. ISBN2 9780387307534. [Google Scholar]
- Romera-Castillo, C.; Sarmento, H.; Alvarez-Salgado, X.A.; Gasol, J.M.; Marrase, C. Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 2010, 55, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Osburn, C.L.; Del Vecchio, R.; Boyd, T.J. Physicochemical Effects on Dissolved Organic Matter Fluorescence in Natural Waters. In Aquatic Organic Matter Fluorescence; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mopper, K.; Zhou, X. Hydroxyl radical photoproduction in the sea and its potential impact on marine processes. Science 1990, 250, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Fasullo, J.T. Global warming due to increasing absorbed solar radiation. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Gil, V.; Gaertner, M.A.; Gutierrez, C.; Losada, T. Impact of climate change on solar irradiation and variability over the Iberian Peninsula using regional climate models. Int. J. Climatol. 2019, 39, 1733–1747. [Google Scholar] [CrossRef] [Green Version]
- Huber, I.; Bugliaro, L.; Ponater, M.; Garny, H.; Emde, C.; Mayer, B. Do climate models project changes in solar resources? Sol. Energy 2016, 39, 1733–1747. [Google Scholar] [CrossRef]
- Sempéré, R.; Para, J.; Tedetti, M.; Charrière, B.; Mallet, M. Variability of Solar Radiation and CDOM in Surface Coastal Waters of the Northwestern Mediterranean Sea. Photochem. Photobiol. 2015, 91, 851–861. [Google Scholar] [CrossRef] [PubMed]
DOC (µM) | a254 (m−1) | a350 (m−1) | MS (a250/a365) | S275-295 (nm−1) | Sr | SUVA254 (m2 g−1 C) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | |
Not Irr | 1190 ± 6 | 44.8 ± 0.6 | 6.8 ± 0.11 | 9.8 ± 0.8 | 0.0193 ± 0.0012 | 0.883 ± 0.012 | 1.37 ± 0.05 | |||||||
Vis | n.a. | n.a. | 43.3 ± 0.4 | −3% | 5.10 ± 0.05 | −25% | 12.6 ± 0.3 | 30% | 0.0231 ± 0.0008 | 20% | 1.062 ± 0.101 | 20% | n.a. | n.a. |
I320-800 | 1066 ± 5 | −10% | 36.2 ± 0.5 | −19% | 3.60 ± 0.01 | −47% | 14.8 ± 0.6 | 52% | 0.0278 ± 0.0006 | 44% | 1.377 ± 0.095 | 56% | 1.23 ± 0.02 | −10% |
I305-800 | 998 ± 2 | −16% | 35.1 ± 0.4 | −22% | 3.52 ± 0.10 | −49% | 14.9 ± 0.4 | 52% | 0.0276 ± 0.0016 | 43% | 1.325 ± 0.118 | 50% | 1.28 ± 0.05 | −7% |
I295-800 | 1074 ± 6 | −10% | 34.6 ± 0.3 | −22% | 3.33 ± 0.32 | −54% | 15.5 ± 1.6 | 59% | 0.0295 ± 0.0005 | 53% | 1.416 ± 0.035 | 60% | 1.17 ± 0.03 | −14% |
FS | 1156 ± 4 | −3% | 35.2 ± 0.0 | −21% | 3.16 ± 0.02 | −53% | 17.0 ± 0.1 | 74% | 0.0306 ± 0.0001 | 59% | 1.388 ± 0.007 | 57% | 1.10 ± 0.01 | −19% |
A (R.U.) | C (R.U.) | M (R.U.) | T (R.U.) | B (R.U.) | λex 280 nm | λex 290 nm | λex 355 nm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | Average ± st. dev. | Δ% | |
Not Irr | 0.656 ± 0.007 | 0.429 ± 0.008 | 0.660 ± 0.007 | 0.871 ± 0.033 | 0.384 ± 0.019 | 62.60 ± 0.57 | 68.63 ± 1.03 | 20.53 ± 0.36 | ||||||||
Vis | 0.566 ± 0.004 | −14% | 0.282 ± 0.009 | −34% | 0.508 ± 0.006 | −23% | 0.798 ± 0.029 | −8% | 0.360 ± 0.021 | −6% | 54.29 ± 1.02 | −13% | 55.16 ± 0.83 | −20% | 20.53 ± 0.68 | −35% |
I320-800 | 0.365 ± 0.002 | −44% | 0.184 ± 0.008 | −57% | 0.370 ± 0.012 | −43% | 0.502 ± 0.031 | −42% | 0.237 ± 0.019 | −38% | 28.20 ± 0.47 | −55% | 39.59 ± 0.18 | −51% | 13.41 ± 0.83 | −57% |
I305-800 | 0.356 ± 0.005 | −45% | 0.196 ± 0.003 | −54% | 0.362 ± 0.002 | −45% | 0.486 ± 0.032 | −44% | 0.236 ± 0.017 | −39% | 27.06 ± 1.33 | −57% | 31.40 ± 0.54 | −54% | 14.07 ± 0.22 | −55% |
I295-800 | 0.343 ± 0.009 | −47% | 0.181 ± 0.010 | −58% | 0.340 ± 0.009 | −48% | 0.477 ± 0.023 | −45% | 0.238 ± 0.018 | −38% | 27.10 ± 1.12 | −57% | 29.11 ± 0.79 | −58% | 13.29 ± 0.59 | −58% |
FS | 0.412 ± 0.004 | −37% | 0.208 ± 0.001 | −52% | 0.442 ± 0.008 | −33% | 0.442 ± 0.035 | −49% | 0.220 ± 0.023 | −43% | 26.47 ± 2.97 | −58% | 32.50 ± 0.80 | −53% | 15.21 ± 0.04 | −52% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retelletti Brogi, S.; Charrière, B.; Gonnelli, M.; Vaultier, F.; Sempéré, R.; Vestri, S.; Santinelli, C. Effect of UV and Visible Radiation on Optical Properties of Chromophoric Dissolved Organic Matter Released by Emiliania huxleyi. J. Mar. Sci. Eng. 2020, 8, 888. https://doi.org/10.3390/jmse8110888
Retelletti Brogi S, Charrière B, Gonnelli M, Vaultier F, Sempéré R, Vestri S, Santinelli C. Effect of UV and Visible Radiation on Optical Properties of Chromophoric Dissolved Organic Matter Released by Emiliania huxleyi. Journal of Marine Science and Engineering. 2020; 8(11):888. https://doi.org/10.3390/jmse8110888
Chicago/Turabian StyleRetelletti Brogi, Simona, Bruno Charrière, Margherita Gonnelli, Frédéric Vaultier, Richard Sempéré, Stefano Vestri, and Chiara Santinelli. 2020. "Effect of UV and Visible Radiation on Optical Properties of Chromophoric Dissolved Organic Matter Released by Emiliania huxleyi" Journal of Marine Science and Engineering 8, no. 11: 888. https://doi.org/10.3390/jmse8110888
APA StyleRetelletti Brogi, S., Charrière, B., Gonnelli, M., Vaultier, F., Sempéré, R., Vestri, S., & Santinelli, C. (2020). Effect of UV and Visible Radiation on Optical Properties of Chromophoric Dissolved Organic Matter Released by Emiliania huxleyi. Journal of Marine Science and Engineering, 8(11), 888. https://doi.org/10.3390/jmse8110888