The Effect of Tropical Cyclone Nicholas (11–20 February 2008) on Sea Level Anomalies in Indonesian Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description and Its Application
2.2. Data
2.3. Verification Method
2.4. Local Forcing Effects
3. Results and Discussions
3.1. Model Verification
3.2. Analysis of Increases in Sea Levels Caused by TC Nicholas
3.2.1. Maximum Residual Water Levels and Areas Most Affected by the TC Nicholas
3.2.2. Relationship of the Residual Water Levels in the Indonesian Waters to the Atmospheric Pressures at TC Nicholas’s Center
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coordinating Ministry for Maritime & Investment Affairs. Available online: https://maritim.go.id/menko-maritim-luncurkan-data-rujukan-wilayah-kelautan-indonesia/ (accessed on 19 June 2020).
- Wheeler, M.C.; McBride, J.L. Australian-Indonesian monsoon. In Intraseasonal Variability in the Atmosphere-Ocean Climate System; Mason, J., Ed.; Springer: Berlin, Germany, 2005; pp. 125–173. [Google Scholar]
- Mohtadi, M.; Oppo, D.W.; Steinke, S.; Stuut, J.B.W.; Holz, R.D.P.; Hebbeln, D.; Lückge, A. Glacial to Holocene swings of the Australian–Indonesian monsoon. Nat. Geosci. 2011, 4, 540–544. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, H.; Yu, W.; Liu, L.; Yang, G.; Liu, B. The onset of the Indonesian–Australian Summer Monsoon triggered by the First-Branch Eastward-Propagating Madden–Julian Oscillation. J. Clim. 2019, 32, 5453–5470. [Google Scholar] [CrossRef]
- Qu, T.; Meyers, G. Seasonal characteristics of circulation in the Southeastern Tropical Indian Ocean. J. Phys. Oceanogr. 2005, 35, 255–267. [Google Scholar] [CrossRef]
- Quadfasel, D.; Cresswell, G.R. A note on the seasonal variability of the South Java Current. J. Geophys. Res. Atmos. 1992, 97, 3685–3688. [Google Scholar] [CrossRef]
- Iskandar, I.; Tozuka, T.; Sasaki, H.; Masumoto, Y.; Yamagata, T. Intraseasonal variations of surface and subsurface currents off Java as simulated in a high-resolution ocean general circulation model. J. Geophys. Res. 2006, 111, C12015. [Google Scholar] [CrossRef] [Green Version]
- Bray, N.A.; Wijffels, S.E.; Chong, J.C.; Fieux, M.; Hautala, S.; Meyers, G.; Morawitz, W.M.L. Characteristics of the Indo-Pacific throughflow in the Eastern Indian Ocean. Geophys. Res. Lett. 1997, 24, 2569–2572. [Google Scholar] [CrossRef]
- Yu, Z.; Potemra, J. Generation mechanism for the intraseasonal variability in the Indo-Australian basin. J. Geophys. Res. 2006, 111, C01013. [Google Scholar] [CrossRef]
- Gordon, A.L.; Sprintall, J.; Van Aken, H.M.; Susanto, D.; Wijffels, S.; Molcard, R.; Ffield, A.; Pranowo, W.; Wirasantosa, S. The Indonesian throughflow during 2004–2006 as observed by the INSTANT Program. Dyn. Atmos. Oceans 2010, 50, 115–128. [Google Scholar] [CrossRef]
- Syamsudin, F.; Kaneko, A. Ocean variability along the southern coast of Java and Lesser Sunda Islands. J. Oceanogr. 2013, 69, 557–570. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Ogata, T.; Matsumoto, Y. Interactions between mesoscale eddy variability and Indian Ocean Dipole events in the Southeastern Tropical Indian Ocean—Case studies for 1994 and 1997/1998. Ocean Dyn. 2010, 60, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Hanifah, F.; Ningsih, N.S.; Sofian, I. Dynamics of eddies in the Southeastern Tropical Indian Ocean. In Journal of Physics: Conference Series, Proceedings of the 6th Asian Physics Symposium, Bandung, Indonesia, 19–20 August 2015; Institute of Physics Publishing: Bristol, UK, 2016; Volume 739, p. 012042. [Google Scholar]
- Iskandar, I.; Sasaki, H.; Sasai, Y.; Masumoto, Y.; Mizuno, K. A numerical investigation of eddy-induced chlorophyll bloom in the southeastern tropical Indian Ocean during Indian Ocean Dipole—2006. Ocean Dyn. 2010, 60, 731–742. [Google Scholar] [CrossRef]
- Chakravorty, S.; Gnanaseelan, C.; Chowdary, J.S.; Luo, J.J. Relative role of El Niño and IOD forcing on the southern tropical Indian Ocean Rossby waves. J. Geophys. Res. 2014, 119, 5105–5122. [Google Scholar] [CrossRef]
- Vaid, B.H.; Gnanaseelan, C.; Polito, P.S.; Salvekar, P.S. Influence of Pacific on Southern Indian Ocean Rossby Waves. Pure Appl. Geophys. 2007, 164, 1765–1785. [Google Scholar] [CrossRef]
- Iskandar, I.; Mardiansyah, W.; Masumoto, Y.; Yamagata, T. Intraseasonal Kelvin wave along the southern coast of Sumatra and Java. J. Geophys. Res. Atmos. 2005, 110, C04013. [Google Scholar] [CrossRef] [Green Version]
- Ningsih, N.S.; Kusmarani, A.M.; Hanifah, F. Kelvin wave propagation along the southern coasts of Sumatra, Java, and Lesser Sunda Islands generated by Madden-Julian Oscillation (MJO) Phase 3. In IOP Conference Series: Earth and Environmental Science, Proceedings of the First Maluku International Conference on Marine Science and Technology, Ambon, Indonesia, 24–26 October 2018; Institute of Physics Publishing: Bristol, UK, 2019; Volume 339, p. 012029. [Google Scholar]
- Xu, T.F.; Wei, Z.X.; Cao, G.J.; Li, S.J. Pathways of intraseasonal Kelvin waves in the Indonesian Throughflow regions derived from satellite altimeter observation. Atmos. Ocean. Sci. Lett. 2016, 9, 375–380. [Google Scholar] [CrossRef]
- Asanuma, I.; Matsumoto, K.; Okano, H.; Kawano, T.; Hendiarti, N.; Sachoemar, S.I. Spatial distribution of phytoplankton along the Sunda Islands: The monsoon anomaly in 1998. J. Geophys. Res. 2003, 108, 33. [Google Scholar] [CrossRef]
- Susanto, R.D.; Gordon, A.L.; Zheng, Q. Upwelling along the coast of Java and Sumatra and its relation to ENSO. Geophys. Res. Lett. 2001, 28, 1599–1602. [Google Scholar] [CrossRef]
- Ningsih, N.S.; Rakhmaputeri, N.; Harto, A.B. Upwelling Variability along the Southern Coast of Bali and in Nusa Tenggara Waters. Ocean Sci. J. 2013, 48, 49–57. [Google Scholar] [CrossRef]
- Rizal, A.M.; Ningsih, N.S. Ocean wave energy potential along the west coast of the Sumatra Island, Indonesia. J. Ocean Eng. Mar. Energy 2020, 6, 137–154. [Google Scholar] [CrossRef]
- Rizal, A.M.; Ningsih, N.S.; Sofian, I.; Hanifah, F.; Hilmi, I. Preliminary study of wave energy resource assessment and its seasonal variation along the southern coasts of Java, Bali, and Nusa Tenggara waters. J. Renew. Sustain. Energy 2019, 11, 014502. [Google Scholar] [CrossRef]
- Hartoko, A.; Helmi, M.; Sukarno, M.; Hariyadi. Spatial tsunami modelling for the south Java coastal area, Indonesia. Int. J. Geomate 2016, 11, 2455–2460. [Google Scholar]
- Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D.H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S.D.; Thio, H.K. A probabilistic tsunami hazard assessment for Indonesia. Nat. Hazards Earth Syst. Sci. 2014, 14, 3105–3122. [Google Scholar] [CrossRef] [Green Version]
- Windupranata, W.; Nusantara, C.A.D.S.; Wijaya, D.D.; Prijatna, P. Impact analysis of Tropical Cyclone Cempaka-Dahlia on wave heights in Indonesian waters from numerical model and altimetry satellite. KnE Eng. 2019, 4, 203–214. [Google Scholar] [CrossRef]
- Ramdhani, A. The Effect of Tropical Cyclones and Madden Julian Oscillation (MJO) on High Wave Events Using the Wavewatch III Model in Inner Seas of Indonesian. Ph.D. Thesis, Institut Teknologi Bandung, Bandung, Indonesia, 2015. [Google Scholar]
- Ningsih., N.S.; Hadi, S.; Utami, M.D.; Rudiawan, A.P. Modelling of storm tide flooding along the southern coast of Java, Indonesia. In Advances in Geosciences; Satake, K., Gan, J., Eds.; World Scientific Publishing Company: Singapore, 2011; Volume 24, pp. 87–103. [Google Scholar]
- Zikra, M.; Suntoyo; Lukijanto. Climate change impacts on Indonesian coastal areas. In Procedia Earth and Planetary Science, Proceedings of the 2nd International Seminar on Ocean and Coastal Engineering, Environment and Natural Disaster Management, ISOCEEN 2014, Surabaya, Indonesia, 2 December 2014; Suntoyo, Rosyid, D.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 14, pp. 57–63. [Google Scholar]
- Marfai, M.A. Impact of sea level rise to coastal ecology: A case study on the northern part of Java Island, Indonesia. Quaest. Geogr. 2014, 33, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Morey, S.L.; Baig, S.; Bourassa, M.A.; Dukhovskoy, D.S.; O’Brien, J.J. Remote forcing contribution to storm-induced sea level rise during Hurricane Dennis. Geophys. Res. Lett. 2006, 33, L19603. [Google Scholar] [CrossRef] [Green Version]
- Horsburgh, K.J.; Wilson, C. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. J. Geohys. Res. 2007, 112, C08003. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.S.; Murty, A.S. Storm Surges along the East Coast of India. In Natural and Man-Made Hazards, Proceedings of the International Symposium, Rimouski, QC, Canada, 3–9 August 1986; El-Sabh, M.I., Murty, T.S., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 257–277. [Google Scholar]
- Mamnun, N.; Bricheno, L.M.; Rashed-Un-Nabi, M. Forcing ocean model with atmospheric model outputs to simulate storm surge in the Bangladesh coast. Trop. Cyclone Res. Rev. 2020, 9, 117–134. [Google Scholar] [CrossRef]
- Olbert, A.I.; Nash, S.; Cunnane, C.; Hartnett, M. Tide–surge interactions and their effects on total sea levels in Irish coastal waters. Ocean Dyn. 2013, 63, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wang, T.; Leung, R.; Hibbard, K.; Janetos, T.; Kraucunas, I.; Rice, J.; Preston, B.; Wilbanks, T. A modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico. Nat. Hazards 2014, 71, 1771–1794. [Google Scholar] [CrossRef]
- Mulyana, E.; Prayoga, M.B.R.; Yananto, A.; Wirahma, S.; Aldrian, E.; Harsoyo, B.; Seto, H.; Sunarya, Y. Tropical cyclones characteristic in southern Indonesia and the impact on extreme rainfall event. In MATEC Web of Conferences, Proceedings of the International Conference on Disaster Management (ICDM 2018), Padang, Indonesia, 2–4 May 2018; Haigh, R., Comfort, L., Hakam, A., Ismail, F.A., Eds.; EDP Sciences: Les Ulis, France, 2018; Volume 229, p. 02007. [Google Scholar]
- Tjasyono, B. Tropical storm effect with respect to weather over the Indonesian region. Proc. ITB 1985, 18, 61–71. [Google Scholar]
- Kompas. Available online: https://nasional.kompas.com/read/2008/02/17/09205642/Gelombang.Laut.6.Meter.Hingga.19.Februari (accessed on 19 June 2020).
- Detik News. Available online: https://news.detik.com/berita/d-896090/gelombang-tinggi-hingga-6-m-landanusantara (accessed on 19 June 2020).
- Shchepetkin, A.F.; McWilliams, J.C. The Regional Ocean Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Emery, W.J.; Thomson, R.E. Data Analysis Methods in Physical Oceanography; Elsevier: New York, NY, USA, 2001. [Google Scholar]
- Peliz, A.; Dubert, J.; Haidvogel, D.B.; Le Cann, B. Generation and unstable evolution of a density-driven Eastern Poleward Current: The Iberian Poleward Current. J. Geophys. Res. 2003, 108, 3268. [Google Scholar] [CrossRef] [Green Version]
- Dinniman, M.S.; Klinck, J.M.; Smith, W.O., Jr. Cross shelf exchange in a model of the Ross Sea circulation and biogeochemistry. Deep-Sea Res. Part II 2003, 50, 3103–3120. [Google Scholar] [CrossRef]
- Budgell, W.P. Numerical simulation of ice-ocean variability in the Barents Sea region. Ocean Dyn. 2005, 55, 370–387. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Arango, H.G.; Signell, R.P. Performance of four turbulence closure methods implemented using a generic length scale method. Ocean Model. 2005, 8, 81–113. [Google Scholar] [CrossRef]
- Robertson, R.; Ffield, A. M2 baroclinic tides in the Indonesian seas. Oceanography 2005, 18, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Minh, N.N.; Patrick, P.; Florent, L.; Sylvain, O.; Gildas, C.; Damien, A.; Van Uu, D. Tidal characteristics of the gulf of Tonkin. Cont. Shelf Res. 2014, 91, 37–56. [Google Scholar] [CrossRef] [Green Version]
- Sindhu, B.; Suresh, I.; Unnikrishnan, A.S.; Bhatkar, N.V.; Neetu, S.; Michael, G.S. Improved bathymetric datasets for the shallow water regions in the Indian Ocean. J. Earth Syst. Sci. 2007, 116, 261–274. [Google Scholar] [CrossRef]
- Ningsih, N.S.; Suryo, W.; Anugrah, S.D. Study on characteristics of residual water level in Jakarta, Semarang, and Surabaya waters—Indonesia and its relation to storm events in November 2007. Int. J. Basic Appl. Sci. 2011, 11, 19–25. [Google Scholar]
- Chambers, D.P. Gravimetric methods—Satellite altimeter measurements. In Treatise on Geophysics, 2nd ed.; Schubert, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 117–149. [Google Scholar]
Points | Locations | NRMSE (%) | Bias (cm) | Phase Lags (hour) |
---|---|---|---|---|
1 | Aceh | 15 | −0.30 | −1 |
2 | Padang | 12 | 0.01 | −1 |
3 | Garut | 15 | 0.12 | −1 |
4 | Yogyakarta | 16 | 0.03 | −1 |
5 | Malang | 16 | 0.01 | −1 |
6 | Koeta, Lombok | 16 | −0.04 | −1 |
7 | Jambi | 09 | −0.17 | 1 |
8 | Samarinda | 20 | −0.19 | 2 |
9 | Tolitoli | 11 | −0.20 | 1 |
10 | Tarakan | 11 | −0.17 | 1 |
11 | Tipo-Tipo, Filipina | 11 | −0.19 | 1 |
12 | Hapo, Maluku | 05 | −0.25 | 0 |
13 | Obi, Halmahera | 18 | −0.24 | 1 |
14 | Merauke | 11 | 0.25 | 1 |
15 | Western Australia | 17 | −0.50 | −1 |
Points | Locations | Residual Water Levels (Δηtot) (m) | Local Forcings (m) | Remote Forcings (m) | ||
---|---|---|---|---|---|---|
Wind Set-Up (ΔηW) | Inverted Barometer Effect | Total Local Forcings | ||||
1 | Padang | 0.11 | 0.0001 | −0.0150 | −0.0149 | 0.12 |
2 | Bengkulu | 0.13 | 0.0005 | −0.0050 | −0.0045 | 0.13 |
3 | Lampung | 0.16 | 0.0018 | 0.0050 | 0.0068 | 0.15 |
4 | Garut | 0.18 | 0.0010 | 0.0020 | 0.0030 | 0.18 |
5 | Yogyakarta | 0.20 | 0.0017 | 0.0100 | 0.0117 | 0.19 |
6 | Malang | 0.18 | 0.0020 | 0.0010 | 0.0030 | 0.18 |
7 | Buleleng | 0.18 | 0.0019 | 0.0180 | 0.0199 | 0.16 |
8 | Kuta | 0.21 | 0.0008 | 0.0200 | 0.0208 | 0.19 |
9 | Koeta | 0.17 | 0.0007 | 0.0220 | 0.0227 | 0.15 |
10 | Plampang | 0.18 | 0.0004 | 0.0180 | 0.0184 | 0.16 |
11 | Belitung | 0.15 | 0.0100 | 0.0070 | 0.0170 | 0.13 |
12 | Jungkat | 0.17 | 0.0057 | −0.0100 | −0.0043 | 0.17 |
13 | Makassar | 0.18 | 0.0038 | 0.0100 | 0.0138 | 0.17 |
14 | Boepinang | 0.16 | 0.0003 | 0.0100 | 0.0103 | 0.15 |
15 | Timika | 0.20 | 0.0030 | 0.0300 | 0.0330 | 0.17 |
16 | Merauke | 0.38 | 0.0060 | 0.0280 | 0.0340 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ningsih, N.S.; Hanifah, F.; Tanjung, T.S.; Yani, L.F.; Azhar, M.A. The Effect of Tropical Cyclone Nicholas (11–20 February 2008) on Sea Level Anomalies in Indonesian Waters. J. Mar. Sci. Eng. 2020, 8, 948. https://doi.org/10.3390/jmse8110948
Ningsih NS, Hanifah F, Tanjung TS, Yani LF, Azhar MA. The Effect of Tropical Cyclone Nicholas (11–20 February 2008) on Sea Level Anomalies in Indonesian Waters. Journal of Marine Science and Engineering. 2020; 8(11):948. https://doi.org/10.3390/jmse8110948
Chicago/Turabian StyleNingsih, Nining Sari, Farrah Hanifah, Tika Sekar Tanjung, Laela Fitri Yani, and Muchamad Al Azhar. 2020. "The Effect of Tropical Cyclone Nicholas (11–20 February 2008) on Sea Level Anomalies in Indonesian Waters" Journal of Marine Science and Engineering 8, no. 11: 948. https://doi.org/10.3390/jmse8110948
APA StyleNingsih, N. S., Hanifah, F., Tanjung, T. S., Yani, L. F., & Azhar, M. A. (2020). The Effect of Tropical Cyclone Nicholas (11–20 February 2008) on Sea Level Anomalies in Indonesian Waters. Journal of Marine Science and Engineering, 8(11), 948. https://doi.org/10.3390/jmse8110948