Long-Term Performance of Mega-Nourishments: Role of Directional Wave Climate and Initial Geometry
Abstract
:1. Introduction
2. Methodology
2.1. Morphology of the Zm and Prevailing Wave Conditions
2.2. Model Description
2.3. Model Settings
2.4. Metrics for Mega-Nourishment Performance
3. Effect of Varying the Wave Angle
3.1. Design and Validation of the Synthetic Wave Climate
3.2. Sensitivity to the Frequency of High-Angle Waves
4. Effect of Varying the Mega-Nourishment Geometry
4.1. Sensitivity to the Initial Asymmetry
4.2. Sensitivity to the Initial Aspect Ratio
4.3. Sensitivity to The Volume
5. Discussion
5.1. Physical Processes Driving Mega-Nourishment Evolution
5.1.1. Importance of High-Angle Waves
5.1.2. Diffusivity and Feeding Asymmetry
5.2. Design Recommendations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Design of the Synthetic Mega-Nourishment
References
- Stive, M.J.F.; de Schipper, M.A.; Luijendijk, A.P.; Aarninkhof, S.G.J.; van Gelder-Maas, C.; van Thiel de Vries, J.S.M.; de Vries, S.; Henriquez, M.; Marx, S.; Ranasinghe, R. A new alternative to saving our beaches from sea-level rise: The Sand Engine. Coast. Eng. 2013, 29, 1001–1008. [Google Scholar] [CrossRef]
- Hamm, L.; Capobianco, M.; Dette, H.H.; Lechuga, A.; Spanhoff, R.; Stive, M.J.F. A summary of European experience with shore nourishment. Coast. Eng. 2002, 47, 237–264. [Google Scholar] [CrossRef]
- de Schipper, M.A.; De Vries, S.; Ruessink, B.G.; De Zeeuw, R.C.; Rutten, J.; Van Gelder-Maas, C.; Stive, M.J.F. Initial spreading of a mega feeder nourishment: Observations of the Sand Engine pilot project. Coast. Eng. 2016, 111, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Luijendijk, A.P.; Ranasinghe, R.; de Schipper, M.A.; Huisman, B.A.; Swinkels, C.M.; Walstra, D.J.R.; Stive, M.J.F. The initial morphological response of the Sand Engine: A process-based modelling study. Coast. Eng. 2017, 119, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rutten, J.; Ruessink, B.G.; Price, T.D. Observations on sandbar behaviour along a man-made curved coast. Earth Surf. Process. Landforms 2018, 43, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Lesser, G.R.; Roelvink, J.A.; van Kester, J.A.T.M.; Stelling, G.S. Development and validation of a three-dimensional morphological model. Coastal Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Ruggiero, P.; Buijsman, M.; Kaminsky, G.M.; Gelfenbaum, G. Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change. Mar. Geol. 2010, 273, 127–140. [Google Scholar] [CrossRef]
- Luijendijk, A.P.; de Schipper, M.A.; Ranasinghe, R. Morphodynamic Acceleration Techniques for Multi-Timescale Predictions of Complex Sandy Interventions. J. Mar. Sci. Eng. 2019, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Falqués, A.; Garnier, R.; Ojeda, E.; Ribas, F.; Guillén, J. Q2D-morfo: A medium to long term model for beach morphodynamics. In River, Coastal and Estuarine Morphodynamics: RCEM 2007; Dohmen-Jansen, C.M., Hulscher, S.J.M.H., Eds.; Taylor and Francis Group: London, UK, 2008; Volume 1, pp. 71–78. [Google Scholar]
- van den Berg, N.; Falqués, A.; Ribas, F. Long-term evolution of nourished beaches under high angle wave conditions. J. Mar. Syst. 2011, 88, 102–112. [Google Scholar] [CrossRef]
- Arriaga, J.; Rutten, J.; Ribas, F.; Ruessink, B.; Falqués, A. Modeling the longterm diffusion and feeding capability of a mega-nourishment. Coast. Eng. 2017, 121, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tonnon, P.K.; Huisman, B.J.A.; Stam, G.N.; van Rijn, L.C. Numerical modelling of erosion rates, life span and maintenance volume of mega nourishments. Coast. Eng. 2018, 131, 51–69. [Google Scholar] [CrossRef] [Green Version]
- Falqués, A.; Calvete, D. Large scale dynamics of sandy coastlines. Diffusivity and instability. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Idier, D.; Falqués, A.; Rohmer, J.; Arriaga, J. Self-organized kilometre-scale shoreline sandwave generation: Sensitivity to model and physical parameters. J. Geophys. Res. 2017, 122. [Google Scholar] [CrossRef] [Green Version]
- Ashton, A.; Murray, A.B. High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. J. Geophys. Res. 2006, 111, F04011. [Google Scholar] [CrossRef] [Green Version]
- Kaergaard, K.; Fredsoe, J. Numerical modeling of shoreline undulations part 2: Varying wave climate and comparison with observations. Coastal Eng. 2013, 75, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Kaergaard, K.; Fredsoe, J. Numerical modeling of shoreline undulations part 1: Constant wave climate. Coastal Eng. 2013, 75, 64–76. [Google Scholar] [CrossRef]
- Falqués, A. Wave driven alongshore sediment transport and stability of the Dutch coastline. Coast. Eng. 2006, 53, 243–254. [Google Scholar] [CrossRef]
- Ashton, A.; Murray, A.B.; Arnault, O. Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature 2001, 414, 296–300. [Google Scholar] [CrossRef]
- Falqués, A.; Ribas, F.; Idier, D.; Arriaga, J. Formation mechanisms for self-organized kilometer-scale shoreline sand waves. J. Geophys. Res. Earth Surf. 2017, 122, 10.1002/2016JF003964. [Google Scholar] [CrossRef] [Green Version]
- Portos, L. Effect of Sea Level Variations in the Long-Term Dynamics of the Zandmotor Meganourishment. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2020. [Google Scholar]
- van den Berg, N.; Falqués, A.; Ribas, F. Modelling large scale shoreline sand waves under oblique wave incidence. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Komar, P.D. Beach Processes and Sedimentation, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Battjes, J.A. Modeling of turbulence in the surfzone. Symp. Model. Tech. 1975, 2, 1050–1061. [Google Scholar]
- Pelnard-Considère, R. Essai de theorie de l’Evolution des Formes de Rivage en Plages de Sable et de Galets. Journees L’Hydraulique 1956, 3, 289–298. [Google Scholar]
- Falqués, A. On the diffusivity in coastline dynamics. Geophys. Res. Lett. 2003, 30, 2119. [Google Scholar] [CrossRef]
- Ashton, A.; Murray, A.B. High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. J. Geophys. Res. 2006, 111, F04012. [Google Scholar] [CrossRef] [Green Version]
- Roelvink, J.A.; Reniers, A.J.H.M. A guide to modeling coastal morphology. In Advances in Coastal and Ocean Engineering; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Walstra, D.J.R.; Hoekstra, R.; Tonnon, P.K.; Ruessink, B.G. Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings. Coast. Eng. 2013, 77, 57–70. [Google Scholar] [CrossRef]
- Benedet, L.; Dobrochinski, J.P.F.; Walstra, D.J.R.; Klein, A.H.F.; Ranasinghe, R. A morphological modeling study to compare different methods of wave climate schematization and evaluate strategies to reduce erosion losses from a beach nourishment project. Coast. Eng. 2016, 112, 69–86. [Google Scholar] [CrossRef]
- Yu, J.; Slinn, D.N. Effects of wave-current interaction on rip currents. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
Sector I (33%) | Sector II (11%) | Sector III (27%) | Sector IV (29%) | Shoreline | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | H(m) | (deg) | T (s) | H (m) | (deg) | T (s) | H (m) | (deg) | T (s) | H (m) | (deg) | T (s) | RMSE (m) |
1 | 1.4 | −74.2 | 5.8 | 1.3 | −21.4 | 5.7 | 1.2 | 27.6 | 6.3 | 1.0 | 63.3 | 5.8 | 56 |
2 | 1.8 | −76.5 | 7.0 | 1.7 | −22.0 | 7.2 | 1.5 | 23.9 | 7.4 | 1.2 | 65.5 | 6.5 | 11 |
3 | 1.7 | −72.3 | 6.8 | 1.6 | −21.3 | 7.0 | 1.4 | 24.1 | 7.2 | 1.2 | 62.6 | 6.4 | 17 |
4 | 1.9 | −76.7 | 7.2 | 1.8 | −22.1 | 7.4 | 1.7 | 23.1 | 7.6 | 1.3 | 65.9 | 6.7 | 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arriaga, J.; Ribas, F.; Falqués, A.; Rutten, J.; Ruessink, G. Long-Term Performance of Mega-Nourishments: Role of Directional Wave Climate and Initial Geometry. J. Mar. Sci. Eng. 2020, 8, 965. https://doi.org/10.3390/jmse8120965
Arriaga J, Ribas F, Falqués A, Rutten J, Ruessink G. Long-Term Performance of Mega-Nourishments: Role of Directional Wave Climate and Initial Geometry. Journal of Marine Science and Engineering. 2020; 8(12):965. https://doi.org/10.3390/jmse8120965
Chicago/Turabian StyleArriaga, Jaime, Francesca Ribas, Albert Falqués, Jantien Rutten, and Gerben Ruessink. 2020. "Long-Term Performance of Mega-Nourishments: Role of Directional Wave Climate and Initial Geometry" Journal of Marine Science and Engineering 8, no. 12: 965. https://doi.org/10.3390/jmse8120965
APA StyleArriaga, J., Ribas, F., Falqués, A., Rutten, J., & Ruessink, G. (2020). Long-Term Performance of Mega-Nourishments: Role of Directional Wave Climate and Initial Geometry. Journal of Marine Science and Engineering, 8(12), 965. https://doi.org/10.3390/jmse8120965