Acoustic Characteristics of Small Research Vessels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Vessel Recordings
2.3. Data Analysis
3. Results
3.1. Measurements
3.2. Received Levels with Range
3.3. One-Third Octave Band Levels
3.4. Received Levels with Speed
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Winn, H.E. The biological significance of fish sounds. Mar. Bioacoust. 1964, 2, 213–231. [Google Scholar]
- Au, W.W.L.; Hastings, M.C. Principles of Marine Bioacoustics, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Radford, C.A.; Stanley, J.A.; Hole, W.; Montgomery, J.C.; Jeffs, A. Localised coastal habitats have distinct underwater sound signatures. Mar. Ecol. Prog. Ser. 2010, 401, 21–29. [Google Scholar] [CrossRef]
- Erbe, C.; Reichmuth, C.; Cunningham, K.; Lucke, K.; Dooling, R. Communication masking in marine mammals: A review and research strategy. Mar. Pollut. Bull. 2016, 103, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Meekan, M.G.; Montgomery, J.; McCauley, R.D.; Jeffs, A. Homeward Sound. Science 2005, 308, 221. [Google Scholar] [CrossRef]
- Simpson, S.; Radford, A.; Nedelec, S.; Ferrari, M.C.O.; Chivers, D.P.; McCormick, M.I.; Meekan, M.G. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 2016, 7, 10544. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.J.G.; McCauley, R.D.; Mackie, M.C.; Siwabessy, P.J.; Duncan, A.J. In situ source levels of mulloway (Argyrosomus japonicus) calls. J. Acoust. Soc. Am. 2012, 132, 3559–3568. [Google Scholar] [CrossRef] [Green Version]
- Stanley, J.A.; Van Parijs, S.M.; Hatch, L.T. Underwater sound from vessel traffic reduces the effective communication range in Atlantic cod and haddock. Sci. Rep. 2017, 7, 14633. [Google Scholar] [CrossRef] [Green Version]
- Van der Graaf, A.J.; Ainslie, M.A.; Andre, M.; Brensing, K.; Dalen, J.; Dekeling, R.P.A.; Robinson, S.M.; Tasker, M.I.; Thomsen, F.; Werner, S. European Marine Strategy Framework Directive-Good Environmental Status (MSFD GES): Report of the Technical Subgroup on Underwater Noise and Other Forms of Energy (JRC Scientific and Technical Report); TSG Noise & Milieu Ltd.: Brussels, Belgium, 2012; 75p. [Google Scholar]
- Weilgart, L.S. The impacts of anthropogenic ocean noise on cetaceans and implications for management. Can. J. Zool. 2007, 85, 1091–1116. [Google Scholar] [CrossRef]
- Graham, A.L.; Cooke, S.J. The effects of noise disturbance from various recreational boating activities common to inland waters on the cardiac physiology of a freshwater fish, the largemouth bass (Micropterus salmoides). Aquat. Cons. Mar. Fresh. Ecosyst. 2008, 18, 1315–1324. [Google Scholar] [CrossRef]
- Williams, R.; Erbe, C.; Ashe, E.; Beerman, A.; Smith, J. Severity of killer whale behavioral responses to ship noise: A dose response study. Mar. Poll. Bull. 2014, 79, 254–260. [Google Scholar] [CrossRef]
- Simpson, S.D.; Radford, A.N.; Holles, S.; Ferarri, M.C.O.; Chivers, D.P.; McCormick, M.I.; Meekan, M.G. Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae. In The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology; Popper, A., Hawkins, A., Eds.; Springer: New York, NY, USA, 2016; Volume 875. [Google Scholar] [CrossRef]
- Nedelec, S.L.; Mills, S.C.; Radford, A.N.; Belade, R.; Simpson, S.D.; Nedelec, B.; Côté, I.M. Motorboat noise disrupts co-operative interspecific interactions. Sci. Rep. 2017, 7, 6987. [Google Scholar] [CrossRef] [PubMed]
- Erbe, C.; Marley, S.; Schoeman, R.; Smith, J.N.; Trigg, L.; Embling, C.B. The effects of ship noise on marine mammals—A review. Front. Mar. Sci. 2019, 6, 606. [Google Scholar] [CrossRef] [Green Version]
- Ross, D. Ship sources of ambient noise. IEEE J. Ocean. Eng. 2005, 30, 257–261. [Google Scholar] [CrossRef]
- McDonald, M.A. Increase in deep ocean ambient noise in the Northeast Pacific west of San Nocolas Island. J. Acoust. Soc. Am. 2006, 120, 711–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrand, J.A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 2009, 395, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Frisk, G. Noiseonomics: The relationship between ambient noise levels in the sea and global economic trends. Sci. Rep. 2012, 2, 437. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.; Wright, A.J.; Ashe, E.; Blight, L.K.; Bruintjes, R.; Canessa, R.; Clark, C.W.; Cullis-Suzuki, S.; Dakin, D.T.; Erbe, C.; et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean Coast. Man. 2015, 115, 17–24. [Google Scholar] [CrossRef] [Green Version]
- McWhinnie, L.; Smallshaw, L.; Serra-Sogas, N.; O’Hara, P.D.; Canessa, R. The grand challenges in researching marine noise pollution from vessels: A horizon scan for 2017. Front. Mar. Sci. 2017, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Duarte, C.M.; Chapuis, L.; Collin, S.P.; Costa, D.P.; Devassy, R.P.; Eguiluz, V.M.; Erbe, C.; Halpern, B.S.; Harding, H.R.; Havlik, M.N.; et al. The Ocean Soundscape of the Anthropocene. Science 2020. accepted. [Google Scholar]
- Blane, J.; Jaakson, R. The impact of ecotourism boats on the St. Lawrence beluga whales. Environ. Cons. 1994, 21, 267–269. [Google Scholar] [CrossRef]
- Erbe, C. Underwater noise of whale-watching boats and potential effects on killer whales (Orcinus orca), based on an acoustic impact model. Mar. Mamm. Sci. 2002, 18, 394–418. [Google Scholar] [CrossRef]
- Erbe, C.; Williams, R.; Sandilands, D.; Ashe, E. Identifying modeled ship noise hotspots for marine mammals of Canadas’ Pacific Region. PLoS ONE 2014, 9, e89820. [Google Scholar] [CrossRef] [PubMed]
- Merchant, N.D.; Pirotta, E.; Barton, T.R.; Thompson, P.M. Monitoring ship noise to assess the impact of coastal developments on marine mammals. Mar. Poll. Bull. 2014, 78, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- New, L.F.; Hall, A.J.; Harcourt, R.; Kaufman, G.; Parsons, E.C.M.; Pearson, H.C.; Cosentino, A.M.; Schick, R.S. The modelling and assessment of whale-watching impacts. Ocean Coast. Manag. 2015, 115, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Cominelli, S.; Devillers, R.; Yurk, H.; MacGillivray, A.O.; McWhinnie, L.; Canessa, R. Noise exposure from commercial shipping for the southern resident killer whale population. Mar. Poll. Bull. 2018, 136, 177–200. [Google Scholar] [CrossRef] [PubMed]
- Hatch, L.; Clark, C.W.; Merrick, R.; Van Parijs, S.M.; Ponirakis, D.; Schwehr, K.; Thompson, M.; Wiley, D. Characterizing the relative contributions of large vessels to total ocean noise fields: A case study using the Gerry E. Studds Stellwagen Bank National Marine Sanctuary. Environ. Man. 2008, 42, 735–752. [Google Scholar]
- Erbe, C.; MacGillivray, A.O.; Williams, R. Mapping cumulative noise from shipping to inform marine spatial planning. J. Acoust. Soc. Am. 2012, 132, EL423–EL428. [Google Scholar] [CrossRef] [Green Version]
- Ross, D. Mechanics of Underwater Noise; Pergamon Press: New York, NY, USA, 1976. [Google Scholar]
- Chion, C.; Lagrois, D.; Dupras, J. A meta-analysis to understand the variability in reported source levels of noise radiated by ships from opportunistic studies. Front. Mar. Sci. 2019, 6, 714. [Google Scholar]
- Au, W.W.L.; Green, M. Acoustics interaction of humpback whales and whale-watching boats. Mar. Environ. Res. 2000, 49, 469–481. [Google Scholar] [CrossRef]
- Buckstaff, K.C. Effects of watercraft noise on the acoustic behaviour of bottlenose dolphins Tursiops truncates in Sarasota Bay. Fla. Mar. Mam. Sci. 2004, 20, 709–725. [Google Scholar] [CrossRef]
- Brooker, A.; Humphrey, V. Measurement of radiated underwater noise from a small research vessel in shallow water. Ocean Eng. 2015, 120, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Wladichuk, J.L.; Hannay, D.E.; MacGillivray, A.O.; Li, Z.; Thornton, S.J. Systematic source level measurements of whale watching vessels and other small boats. J. Ocean. Technol. 2019, 14, 110–126. [Google Scholar]
- Erbe, C.; Liong, S.; Koessler, M.W.; Duncan, A.J.; Gourlay, T. Underwater sound of rigid-hulled inflatable boats. J. Acoust. Soc. Am. 2016, 139, EL223–EL227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCloskey, K.P.; Chapman, K.E.; Chapuis, L.; McCormick, M.I.; Radford, A.N.; Simpson, S.D. Assessing and mitigating impacts of motorboat noise on nesting damselfish. Environ. Poll. 2020, 266, 115376. [Google Scholar] [CrossRef]
- Marley, S.A.; Erbe, C.; Salgado-Kent, C.P.; Parsons, M.J.G.; Parnum, I.M. Spatial and Temporal Variation in the Acoustic Habitat of Bottlenose Dolphins (Tursiops aduncus) within a Highly Urbanized Estuary. Front. Mar. Sci. 2017, 4, 197. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.J.G.; McCauley, R.D.; Mackie, M.C. Characterisation of mulloway (Argyrosomus japonicus) advertisement sounds. Acoust. Aust. 2013, 196, 196–201. [Google Scholar]
- Nedelec, S.L.; Radford, A.N.; Pearl, L.; Nedelec, B.; McCormick, M.I.; Meekan, M.G.; Simpson, S.D. Motorboat noise impacts parental behaviour and offspring survival in a reef fish. Proc. R. Soc. B. 2017, 284, 20170143. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.J.G.; Duncan, A.J.; Parsons, S.K.; Erbe, C. Reducing vessel noise: An example of a solar-electric passenger ferry. J. Acoust. Soc. Am. 2020, 147, 3575–3583. [Google Scholar] [CrossRef]
- Malinowski, S.J.; Gloza, I. Underwater noise characteristics of small ships. Acta Acust. United Acust. 2002, 88, 718–721. [Google Scholar]
- International Organization for Standardization. Underwater Acoustics—Quantities and Procedures for Description and Measurement of Underwater Sound from Ships—Part 1: Requirements for Precision Measurements in Deep Water Used for Comparison Purposes (ISO 17208-1); International Organization for Standardization: Geneva, Switzerland, 2016; 20p. [Google Scholar]
- International Organization for Standardization. Underwater Acoustics—Quantities and Procedures for Description and Measurement of Underwater Sound from Ships—Part 2: Determination of Source Levels from Deep Water Measurements (ISO 17208-2); International Organization for Standardization: Geneva, Switzerland, 2019; 13p. [Google Scholar]
- Hamylton, S.M.; Leon, J.X.; Saunders, M.I.; Woodroffe, C.D. Simulating reef response to sea-level rise at Lizard Island: A geospatial approach. Geomorphology 2014, 222, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Daly, M. Wave Energy and Shoreline Response on a Fringing Reef Complex, Lizard Island, Qld, Australia. Bachelor’s Thesis, Env. Sci., University of New South Wales, Sydney, Australia, 2005; 105p. [Google Scholar]
- Frith, C.; Leis, J.; Goldmand, B. Currents in the Lizard Island region of the Great Barrier Reef Lagoon and their relevance to potential movements of larvae. Coral Reefs 1986, 5, 81–92. [Google Scholar] [CrossRef]
- Gavrilov, A.G.; Parsons, M.J.G. A Matlab toolbox for the Characterisation of Recorded Underwater Sound (CHORUS). Acoust. Aust. 2014, 42, 191–196. [Google Scholar]
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; McGraw Hill: New York, NY, USA, 1983. [Google Scholar]
- De Jong, C.A.F. Characterization of ships as sources of underwater noise. In Proceedings of the NAG-DAGA 2009, Rotterdam, The Netherlands, 23–26 March 2009; pp. 271–274. [Google Scholar]
- Veirs, S.; Veirs, V. Vessel noise measurements underwater in the Haro Strait, WA. J. Acoust. Soc. Am. 2006, 120, 3382. [Google Scholar] [CrossRef]
- Kipple, B.; Gabriele, C. Underwater noise from skiffs to ships. In Proceedings of the Fourth Glacier Bay Science Symposium, Junea, AK, USA, 26–28 October 2004; Piatt, J.F., Gende, S.M., Eds.; U.S. Geological Survey Scientific Investigations Report 2007-5047; 2007 U.S. Geological Survey. pp. 172–175. [Google Scholar]
- Cato, D.H. Simple methods of estimating source levels and locations of marine animal sounds. J. Acoust. Soc. Am. 1998, 104, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- McCauley, R.D.; Cato, D.H.; Jeffrey, A.F. A Study of Impacts of the Impacts of Vessel Noise on Humpback Whales in Hervey Bay; Report to the Queensland Department of Environment and Heritage; Maryborough Branch: Queensland, Australia, 1996; 163p. [Google Scholar]
- Ladich, F.; Fay, R.R. Auditory evoked potential audiometry in fish. Rev. Fish. Biol. Fish. 2013, 23, 317–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasumyan, A.O. Acoustic signaling in fish. J. Ichthyol. 2009, 49, 963–1020. [Google Scholar] [CrossRef]
- Parsons, M.J.G.; Longbottom, S.; Lewis, P.; McCauley, R.D.; Fairclough, D.V. Sound production by the West Australian dhufish (Glaucosoma hebraicum). J. Acoust. Soc. Am. 2013, 134, 2701–2709. [Google Scholar] [CrossRef] [Green Version]
- McWilliam, J.N.; McCauley, R.D.; Erbe, C.; Parsons, M.J.G. Patterns of biophonic periodicity on coral reefs in the Great Barrier Reef. Sci. Rep. 2017, 7, 17459. [Google Scholar] [CrossRef]
- Montgomery, J.C.; Jeffs, A.; Simpson, S.D.; Meekan, M.G.; Tindle, C. Sound as an Orientation Cue for the Pelagic Larvae of Reef Fishes and Decapod Crustaceans. Adv. Mar. Biol. 2006, 51, 143–196. [Google Scholar]
- Radford, A.N.; Kerridge, E.; Simpson, S.D. Acoustic communication in a noisy world: Can fish compete with anthropogenic noise? Behav. Ecol. 2014, 25, 1022–1030. [Google Scholar] [CrossRef] [Green Version]
- Nedelec, S.L.; Mills, S.C.; Lecchini, D.; Nedelec, B.; Simpson, S.D.; Radford, A.N. Repeated exposure to noise increases tolerance in a coral reef fish. Environ. Pollut. 2016, 216, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Putland, R.L.; Merchant, N.D.; Farcas, A.; Radford, C.A. Vessel noise cuts down communication space for vocalizing fish and marine mammals. Glob. Chang. Biol. 2018, 24, 1708–1721. [Google Scholar] [CrossRef] [PubMed]
- Mensinger, A.F.; Putland, R.L.; Radford, C.A. The effect of motorboat sound on Australian snapper Pagrus auratus inside and outside a marine reserve. Ecol. Evol. 2018, 8, 6438–6448. [Google Scholar] [CrossRef] [PubMed]
Primrose | Macquarie 2 | Kirsty K | ||
---|---|---|---|---|
Vessel specifications | Length (m) | 5 | 5.96 | 5.95 |
Width (m) | 2.1 | 2.4 | 2.6 | |
Draught (cm) | 0.9 | 1.18 | 1.23 | |
Mass (kg) | 360 | 825 | 1500 | |
Propeller | No. blades | 3 | 3 | 3 |
Prop radius (cm) | 25 | 32.5 | 32.5 | |
Depth below water (cm) | 47 | 70 | 63 | |
Engine | Engine | Suzuki | Suzuki | Suzuki |
Horsepower | 30 | 90 | 2x90 | |
Fuel | Petrol (4 stroke) | Petrol (4 stroke) | Petrol (4 stroke) |
Target Speed (km h−1) | Primrose (km h−1) | Macquarie (km h−1) | Kirsty K (km h−1) |
---|---|---|---|
5 | 5.86 (0.12, 5.37, 6.55, 73) | 6.12 (0.23, 5.63, 6.43, 88) | 6.41 (0.61, 5.45, 7.66, 83) |
10 | 10.32 (0.50, 9.73, 10.91, 79) | 10.61 (1.64, 9.86, 11.61, 85) | 10.62 (0.59, 9.73, 11.61, 92) |
20 | 19.44 (0.39, 18.95, 20.28, 75) | 20.63 (3.32, 18.95, 3.32, 86) | 19.74 (0.52, 19.20, 20.87, 88) |
30 | 30.23 (1.23, 28.80, 32.73, 81) | 30.75 (3.30, 30.0, 33.49, 82) | 30.40 (1.72, 27.17, 33.49, 86) |
All Ranges | Excluding <15 m Range | ||||||
---|---|---|---|---|---|---|---|
Vessel | Speed | CPL | ASL (dB re 1 µPa) | R2 | CPL | ASL (dB re 1 µPa) | R2 |
Primrose | 5 | −21.2 (−23.79, −18.64) | 159.8 (156.1, 163.6) | 0.79 | −19.5 (−22.98, −15.96) | 156.9 (151.2, 162.7) | 0.72 |
10 | −17.3 (−18.20, −16.33) | 155.4 (154.0, 156.8) | 0.95 | −16.2 (−17.44, −14.90) | 153.5 (151.4, 155.6) | 0.92 | |
20 | −14.0 (−14.72, −13.24) | 153.0 (151.9, 154.1) | 0.95 | −13.6 (−14.70, −12.50) | 152.4 (150.6, 154.2) | 0.92 | |
30 | −13.2 (−14.02, −12.38) | 154.1 (152.9, 155.3) | 0.93 | −14.5 (−15.65, −13.41) | 156.4 (154.5, 158.2) | 0.92 | |
Macquarie | 5 | −21.5 (−23.50, −19.52) | 156.1 (153.2, 159.0) | 0.84 | −12.2 (−14.95, −9.43) | 140.5 (135.9, 145.0) | 0.58 |
10 | −21.3 (−23.31, −19.31) | 161.8 (158.8, 164.8) | 0.85 | −19.8 (−22.43, −17.10) | 159.2 (155.0, 163.4) | 0.78 | |
20 | −17.9 (−18.96, −16.75) | 161.5 (159.9, 163.1) | 0.93 | −18.3 (−19.92, −16.67) | 162.2 (159.6, 164.8) | 0.90 | |
30 | −13.7 (−14.68, −12.64) | 155.7 (154.2, 157.2) | 0.90 | −14.3 (−16.05, −12.57) | 156.7 (153.9, 159.6) | 0.84 | |
Kirsty K | 5 | −21.6 (−23.83, −19.43) | 163.6 (160.4, 166.8) | 0.83 | −16.7 (−20.03, −13.42) | 155.3 (149.9, 160.7) | 0.67 |
10 | −18.7 (−21.38, −16.11) | 164.2 (160.3, 168.0) | 0.69 | −15.3 (−18.33, −12.21) | 158.5 (153.7, 163.2) | 0.58 | |
20 | −17.2 (−18.41, −15.97) | 161.9 (160.1, 163.7) | 0.90 | −15.0 (−16.62, −13.43) | 158.3 (155.7, 160.8) | 0.86 | |
30 | −17.3 (−18.40, −16.13) | 161.8 (160.1, 163.4) | 0.92 | −16.9 (−18.09, −15.71) | 161.2 (159.2, 163.1) | 0.94 | |
Mean CPL (s.d.) | −17.9 (3.1) | −16.0 (2.3) |
Percentiles of Radiated Noise Level (dB re 1 µPa m) | Percentiles of Affected Source Level (dB re 1 µPa m) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All Ranges | Excluding <15 m Range | Loss = 17.9log10 (range) | Loss = 16.0log10 (range) | ||||||||||||||
Vessel | Speed | 25% | 50% | 75% | Range | 25% | 50% | 75% | Range | 25% | 50% | 75% | Range | 25% | 50% | 75% | Range |
Primrose | 5 | 155.5 | 158.4 | 160.2 | 18.8 | 155.6 | 158.3 | 159.9 | 14.3 | 152.4 | 155.1 | 157.4 | 20.2 | 149.3 | 151.7 | 153.9 | 14.6 |
10 | 158.6 | 159.7 | 160.5 | 7.3 | 159.0 | 159.9 | 160.7 | 6.6 | 155.4 | 156.6 | 157.2 | 6.7 | 152.6 | 153.3 | 153.9 | 5.2 | |
20 | 160.3 | 161.6 | 163.5 | 10.8 | 161.3 | 162.3 | 163.9 | 6.9 | 157.6 | 158.4 | 159.9 | 8.9 | 155.5 | 156.2 | 156.9 | 4.7 | |
30 | 163.6 | 164.8 | 166.1 | 9.4 | 164.1 | 165.4 | 166.4 | 6.6 | 160.1 | 161.3 | 162.4 | 8.1 | 158.1 | 158.7 | 159.5 | 4.7 | |
Macquarie | 5 | 151.5 | 153.4 | 155.5 | 15.1 | 151.5 | 153.2 | 155.2 | 8.6 | 148.7 | 150.5 | 153.3 | 15.6 | 145.4 | 146.7 | 148.4 | 11.2 |
10 | 158.1 | 159.6 | 161.2 | 11.4 | 158.0 | 159.3 | 161.0 | 10.6 | 154.8 | 156.4 | 158.0 | 12.2 | 151.4 | 152.9 | 154.3 | 10.7 | |
20 | 163.8 | 164.6 | 165.9 | 8.0 | 163.8 | 164.5 | 165.9 | 6.6 | 160.5 | 161.3 | 162.4 | 8.1 | 157.5 | 158.2 | 159.3 | 6.8 | |
30 | 163.9 | 165.4 | 166.6 | 12.0 | 164.7 | 165.8 | 167.1 | 7.9 | 160.0 | 161.9 | 163.1 | 10.8 | 158.6 | 159.2 | 160.4 | 6.4 | |
Kirsty K | 5 | 159.7 | 161.2 | 162.7 | 14.3 | 159.8 | 161.0 | 162.4 | 14.3 | 156.6 | 158.1 | 160.1 | 15.7 | 153.2 | 154.4 | 155.4 | 15.3 |
10 | 162.9 | 165.3 | 169.0 | 16.2 | 163.5 | 165.5 | 169.7 | 11.9 | 159.7 | 162.1 | 166.0 | 17.1 | 157.1 | 159.5 | 162.7 | 13.3 | |
20 | 165.1 | 166.0 | 167.1 | 9.7 | 165.5 | 166.3 | 167.2 | 6.6 | 161.8 | 163.0 | 164.1 | 9.8 | 159.1 | 160.0 | 160.9 | 7.9 | |
30 | 165.2 | 166.1 | 167.1 | 9.6 | 165.7 | 166.2 | 167.1 | 4.5 | 162.0 | 162.9 | 163.6 | 9.5 | 158.9 | 159.7 | 160.2 | 3.4 |
Vessel | Level at 0 km h−1 | Coefficient Cv1 | Coefficient Cv2 | R2 | RMSE | |
---|---|---|---|---|---|---|
RNL | Primrose | 155.9 (0.7) | 0.84 (0.11) | -- | 0.43 | 2.60 |
Macquarie | 151.5 (0.7) | 1.55 (0.11) | -- | 0.68 | 2.87 | |
Kirsty K | 161.6 (0.9) | 0.53 (0.14) | -- | 0.14 | 3.33 | |
ASL | Primrose | 160.1 (0.7) | −0.78 (0.11) | -- | 0.43 | 2.44 |
Macquarie | 150.1 (1.2) | 0.94 (0.12) | −0.50 (0.06) | 0.50 | 2.62 | |
Kirsty K | 165.1 (0.8) | −0.37 0.12) | -- | 0.09 | 2.97 | |
Full data (17.9 loss) | Primrose | 152.9 (0.6) | 0.84 (0.1) | -- | 0.48 | 2.37 |
Macquarie | 148.4 (0.75) | 1.56 (0.11) | -- | 0.69 | 2.82 | |
Kirsty K | 158.6 (0.9) | 0.53 (0.14) | -- | 0.15 | 3.32 | |
Range >15 m (16.0 loss) | Primrose | 148.8 (0.55) | 1.05 (0.09) | -- | 0.73 | 1.73 |
Macquarie | 143.5 (0.75) | 1.86 (0.12) | -- | 0.81 | 2.36 | |
Kirsty K | 154.5 (11.0) | 0.68 (0.15) | -- | 0.27 | 2.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parsons, M.; Meekan, M. Acoustic Characteristics of Small Research Vessels. J. Mar. Sci. Eng. 2020, 8, 970. https://doi.org/10.3390/jmse8120970
Parsons M, Meekan M. Acoustic Characteristics of Small Research Vessels. Journal of Marine Science and Engineering. 2020; 8(12):970. https://doi.org/10.3390/jmse8120970
Chicago/Turabian StyleParsons, Miles, and Mark Meekan. 2020. "Acoustic Characteristics of Small Research Vessels" Journal of Marine Science and Engineering 8, no. 12: 970. https://doi.org/10.3390/jmse8120970
APA StyleParsons, M., & Meekan, M. (2020). Acoustic Characteristics of Small Research Vessels. Journal of Marine Science and Engineering, 8(12), 970. https://doi.org/10.3390/jmse8120970