An Improved Cleaning Protocol for Foraminiferal Calcite from Unconsolidated Core Sediments: HyPerCal—A New Practice for Micropaleontological and Paleoclimatic Proxies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Scanning Electron Microscopic Analysis
3.2. Synchrotron X-ray Absorption and Weight Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kucera, M. Planktonic Foraminifera as Tracers of Past Oceanic Environments. In Developments in Marine Geology; Hillaire-Marcel, C., De Vernal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 1, pp. 213–262. [Google Scholar]
- Shackleton, N.J. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 1987, 6, 183–190. [Google Scholar] [CrossRef]
- Emiliani, C. Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. Am. J. Sci. 1954, 252, 149–158. [Google Scholar] [CrossRef]
- Anand, P.; Elderfield, H.; Conte, M.H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 2003, 18, 1050. [Google Scholar] [CrossRef]
- Brown, S.J.; Elderfield, H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg-dependent dissolution. Paleoceanography 1996, 11, 543–551. [Google Scholar] [CrossRef]
- Hönisch, B.; Hemming, N.G. Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet. Sci. Lett. 2005, 236, 305–314. [Google Scholar] [CrossRef]
- Berger, W.H. Planktonic Foraminifera: Selective solution and the lysocline. Mar. Geol. 1970, 8, 111–138. [Google Scholar] [CrossRef]
- Kucera, M.; Weinelt, M.; Kiefer, T.; Pflaumann, U.; Hayes, A.; Weinelt, M.; Chen, M.-T.; Mix, A.C.; Barrows, T.T.; Cortijo, E.; et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 2005, 24, 951–998. [Google Scholar] [CrossRef]
- Antonarakou, A.; Kontakiotis, G.; Karageorgis, A.P.; Besiou, E.; Zarkogiannis, S.; Drinia, H.; Mortyn, G.P.; Tripsanas, E. Eco-biostratigraphic advances on late Quaternary geochronology and palaeoclimate: The marginal Gulf of Mexico analogue. Geol. Q. 2019, 63, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Speijer, R.P.; Van Loo, D.; Masschaele, B.; Vlassenbroeck, J.; Cnudde, V.; Jacobs, P. Quantifying foraminiferal growth with high-resolution X-ray computed tomography: New opportunities in foraminiferal ontogeny, phylogeny, and paleoceanographic applications. Geosphere 2008, 4, 760–763. [Google Scholar] [CrossRef] [Green Version]
- Zarkogiannis, S.; Kontakiotis, G.; Antonarakou, A. Logarithmic expression of Globigerina bulloides shell evolution through the biometric analysis: Paleoceanographic implications for the late Quaternary. IOP Conf. Ser. Earth Environ. Sci. 2019, 362, 012100. [Google Scholar] [CrossRef] [Green Version]
- Caromel, A.G.M.; Schmidt, D.N.; Phillips, J.C.; Rayfield, E.J. Hydrodynamic constraints on the evolution and ecology of planktic foraminifera. Mar. Micropaleontol. 2014, 106, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, D.N.; Thierstein, H.R.; Bollmann, J.; Schiebel, R. Abiotic forcing of plankton evolution in the Cenozoic. Science 2004, 303, 207–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarkogiannis, S.; Kontakiotis, G.; Antonarakou, A. Recent planktonic foraminifera population and size response to Eastern Mediterranean hydrography. Rev. Micropaléontologie 2020, 69, 100450. [Google Scholar] [CrossRef]
- Barker, S.; Elderfield, H. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 2002, 297, 833–836. [Google Scholar] [CrossRef]
- Zarkogiannis, S.D.; Antonarakou, A.; Tripati, A.; Kontakiotis, G.; Mortyn, P.G.; Drinia, H.; Greaves, M. Influence of surface ocean density on planktonic foraminifera calcification. Sci. Rep. 2019, 9, 533. [Google Scholar] [CrossRef]
- Lohmann, G.P. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 1995, 10, 445–457. [Google Scholar] [CrossRef]
- Broecker, W.; Clark, E. An evaluation of Lohmann’s Foraminifera weight dissolution index. Paleoceanography 2001, 16, 531–534. [Google Scholar] [CrossRef]
- Vetter, L.; Spero, H.J.; Russell, A.D.; Fehrenbacher, J.S. LA-ICP-MS depth profiling perspective on cleaning protocols for elemental analyses in planktic foraminifers. Geochem. Geophys. Geosyst. 2013, 14, 2916–2931. [Google Scholar] [CrossRef]
- Barker, S.; Greaves, M.; Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 2003, 4, 8407. [Google Scholar] [CrossRef]
- Feldmeijer, W.; Metcalfe, B.; Scussolini, P.; Arthur, K. The effect of chemical pretreatment of sediment upon foraminiferal-based proxies. Geochem. Geophys. Geosyst. 2013, 14, 3996–4014. [Google Scholar] [CrossRef]
- Rosenthal, Y.; Perron-Cashman, S.; Lear, C.H.; Bard, E.; Barker, S.; Billups, K.; Bryan, M.; Delaney, M.L.; deMenocal, P.B.; Dwyer, G.S.; et al. Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research. Geochem. Geophys. Geosyst. 2004, 5, Q04D09. [Google Scholar] [CrossRef]
- Qin, B.; Li, T.; Chang, F.; Xiong, Z.; Algeo, T.J. An Improved Protocol For Cleaning of Planktonic Foraminifera For Shell Weight Measurement. J. Sediment. Res. 2016, 86, 431–437. [Google Scholar] [CrossRef]
- Zarkogiannis, S.D.; Antonarakou, A.; Fernandez, V.; Mortyn, P.G.; Kontakiotis, G.; Drinia, H.; Greaves, M. Evidence of stable foraminifera biomineralization during the last two climate cycles in the tropical Atlantic Ocean. J. Mar. Sci. Eng. 2020, 8, 737. [Google Scholar] [CrossRef]
- Volbers, A.N.A.; Henrich, R. Late Quaternary variations in calcium carbonate preservation of deep-sea sediments in the northern Cape Basin: Results from a multiproxy approach. Mar. Geol. 2002, 180, 203–220. [Google Scholar] [CrossRef]
- Weinkauf, M.F.G.; Zwick, M.M.; Kučera, M. Constraining the Role of Shell Porosity in the Regulation of Shell Calcification Intensity in the Modern Planktonic Foraminifer Orbulina Universa d’Orbigny. J. Foraminifer. Res. 2020, 50, 195–203. [Google Scholar] [CrossRef]
- Hsiang, A.Y.; Brombacher, A.; Rillo, M.C.; Mleneck-Vautravers, M.J.; Conn, S.; Lordsmith, S.; Jentzen, A.; Henehan, M.J.; Metcalfe, B.; Fenton, I.S.; et al. Endless Forams: >34,000 Modern Planktonic Foraminiferal Images for Taxonomic Training and Automated Species Recognition Using Convolutional Neural Networks. Paleoceanogr. Paleoclimatol. 2019, 34, 1157–1177. [Google Scholar] [CrossRef] [Green Version]
- Marchant, R.; Tetard, M.; Pratiwi, A.; Adebayo, M.; de Garidel-Thoron, T. Automated analysis of foraminifera fossil records by image classification using a convolutional neural network. J. Micropalaeontol. 2020, 39, 183–202. [Google Scholar] [CrossRef]
- Zarkogiannis, S.; Fernandez, V.; Greaves, M.; Mortyn, P.G.; Kontakiotis, G.; Antonarakou, A. X-ray tomographic data of planktonic foraminifera species Globigerina bulloides from the Eastern Tropical Atlantic across Termination II. Gigabyte 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Ehrmann, W.; Schmiedl, G.; Hamann, Y.; Kuhnt, T. Distribution of clay minerals in surface sediments of the Aegean Sea: A compilation. Int. J. Earth Sci. 2006, 96, 769. [Google Scholar] [CrossRef]
- Ehrmann, W.; Schmiedl, G.; Hamann, Y.; Kuhnt, T.; Hemleben, C.; Siebel, W. Clay minerals in late glacial and Holocene sediments of the northern and southern Aegean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 249, 36–57. [Google Scholar] [CrossRef]
- Kidd, R.B.; Cita, M.B.; Ryan, W.B.F. Stratigraphy of eastern Mediterranean sapropel sequences recovered during DSDP Leg 42A and their paleoenvironmental significance. In Initial Reports of the Deep Sea Drilling Project/1975/Malaga; Government Printing Office: Washington, DC, USA, 1978; pp. 421–443. [Google Scholar]
- Atwood, R.C.; Bodey, A.J.; Price, S.W.T.; Basham, M.; Drakopoulos, M. A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140398. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, R.; Luciani, V. Do different extraction techniques impact planktic foraminiferal assemblages? An early Eocene case study. Mar. Micropaleontol. 2020, 155, 101795. [Google Scholar] [CrossRef]
- Kilmer, V.J.; Alexander, L.T. Methods of making mechanical analyses of soils. Soil Sci. 1949, 68, 15–24. [Google Scholar] [CrossRef]
- Righetti, M.; Lucarelli, C. May the Shields theory be extended to cohesive and adhesive benthic sediments? J. Geophys. Res. Ocean. 2007, 112, C05039. [Google Scholar] [CrossRef] [Green Version]
- Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: San Diego, CA, USA, 2011; p. 674. [Google Scholar] [CrossRef]
- Castellini, E.; Lusvardi, G.; Malavasi, G.; Menabue, L. Thermodynamic aspects of the adsorption of hexametaphosphate on kaolinite. J. Colloid Interface Sci. 2005, 292, 322–329. [Google Scholar] [CrossRef]
- Green, O.R. Extraction Techniques for Calcareous Microfossils from Argillaceous Sediments. In A Manual of Practical Laboratory and Field Techniques in Palaeobiology; Springer: Dordrecht, The Netherlands, 2001; pp. 334–341. [Google Scholar] [CrossRef]
- Thomson, R.T. Some properties of sodium hexametaphosphate. Analyst 1936, 61, 320–323. [Google Scholar] [CrossRef]
- Johnstone, H.J.H.; Schulz, M.; Barker, S.; Elderfield, H. Inside story: An X-ray computed tomography method for assessing dissolution in the tests of planktonic foraminifera. Mar. Micropaleontol. 2010, 77, 58–70. [Google Scholar] [CrossRef]
- Weir, A.H.; Ormerod, E.C.; El Mansey, I.M.I. Clay mineralogy of sediments of the western Nile Delta. Clay Miner. 2018, 10, 369–386. [Google Scholar] [CrossRef]
- Rostási, Á.; Raucsik, B.; Varga, A. Palaeoenvironmental controls on the clay mineralogy of Carnian sections from the Transdanubian Range (Hungary). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 300, 101–112. [Google Scholar] [CrossRef]
Method | Method Name | Chemical Treatment | Treatment Time | Processing | |||
---|---|---|---|---|---|---|---|
Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | |||
1 | “Calgon” | 50 mL Calgon 5% | - | - | 20 min sonicated every 2 min for 4 s | Wet sieving over >63 μm mesh | Dried overnight |
2 | “30% Peroxide” | 2.5% hydrogen peroxide (4 mL of H2O2 were added to 46 mL distilled water) | - | - | 20 min sonicated every 2 min for 4 s | Wet sieving over >63 μm mesh | Dried overnight |
3 | “HyPerCal treatment” | 4 mL of 30% H2O2 added to 46 mL distilled water (2.5% hydrogen peroxide) | Wet sieving over >63 μm mesh | 4 mL 5% Calgon were added in 46 mL distilled water | 20 + 20 min sonicated every 2 min for 4 s | Wet sieving over >63 μm mesh | Dried overnight |
4 | “Mixed Calgon and peroxide” | 4 mL of 30% H2O2 added in 46 mL of 5% Calgon solution | - | - | 20 min sonicated every 2 min for 4 s | Wet sieving over >63 μm mesh | Dried overnight |
5 | “4% Peroxide” | 4 mL of 49.5% H2O2 added to 46 mL distilled water (4% hydrogen peroxide) | - | - | 20 min sonicated every 2 min for 4 s | Wet sieving over >63 μm mesh | Dried overnight |
6 | “Control” | Treatment only with distilled water | - | - | 20 min sonicated every 2 min for 4 s | Wet sieving over >63 μm mesh | Dried overnight |
Method | Method Name | № of Tests | Contamination (%) | Weight (μg) | Weight Diff. |
---|---|---|---|---|---|
1 | “Calgon” | 5 | 14 (±12) | 23.8 (±1.6) | 21% |
2 | “2.5% Peroxide” | 5 | 18 (±6) | 28.2 (±2.8) | 44% |
3 | “PerCal treatment” | 5 | 0 (±1) | 19.6 (±1.4) | - |
4 | “Mixed Calgon and peroxide” | 5 | 5 (±5) | 22.0 (±2.0) | 12% |
5 | “4% Peroxide” | 5 | 21 (±6) | 24.4 (±0.9) | 25% |
6 | “Control” | 5 | 12 (±6) | 26.4 (±3.8) | 35% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarkogiannis, S.D.; Kontakiotis, G.; Gkaniatsa, G.; Kuppili, V.S.C.; Marathe, S.; Wanelik, K.; Lianou, V.; Besiou, E.; Makri, P.; Antonarakou, A. An Improved Cleaning Protocol for Foraminiferal Calcite from Unconsolidated Core Sediments: HyPerCal—A New Practice for Micropaleontological and Paleoclimatic Proxies. J. Mar. Sci. Eng. 2020, 8, 998. https://doi.org/10.3390/jmse8120998
Zarkogiannis SD, Kontakiotis G, Gkaniatsa G, Kuppili VSC, Marathe S, Wanelik K, Lianou V, Besiou E, Makri P, Antonarakou A. An Improved Cleaning Protocol for Foraminiferal Calcite from Unconsolidated Core Sediments: HyPerCal—A New Practice for Micropaleontological and Paleoclimatic Proxies. Journal of Marine Science and Engineering. 2020; 8(12):998. https://doi.org/10.3390/jmse8120998
Chicago/Turabian StyleZarkogiannis, Stergios D., George Kontakiotis, Georgia Gkaniatsa, Venkata S. C. Kuppili, Shashidhara Marathe, Kazimir Wanelik, Vasiliki Lianou, Evanggelia Besiou, Panayiota Makri, and Assimina Antonarakou. 2020. "An Improved Cleaning Protocol for Foraminiferal Calcite from Unconsolidated Core Sediments: HyPerCal—A New Practice for Micropaleontological and Paleoclimatic Proxies" Journal of Marine Science and Engineering 8, no. 12: 998. https://doi.org/10.3390/jmse8120998
APA StyleZarkogiannis, S. D., Kontakiotis, G., Gkaniatsa, G., Kuppili, V. S. C., Marathe, S., Wanelik, K., Lianou, V., Besiou, E., Makri, P., & Antonarakou, A. (2020). An Improved Cleaning Protocol for Foraminiferal Calcite from Unconsolidated Core Sediments: HyPerCal—A New Practice for Micropaleontological and Paleoclimatic Proxies. Journal of Marine Science and Engineering, 8(12), 998. https://doi.org/10.3390/jmse8120998